Metrics for Screening CO₂ Utilization Processes

Peter Kabatek Energy Sector Planning and Analysis (ESPA) Services / WorleyParsons

> U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013

Presentation Outline

- NETL's Carbon Storage Program
- Introduction of the metrics
- Review of the case study technology
- Application of metrics to the case study technology
- Discussion of metrics interpretation and grouping

NETL Carbon Storage Program

- The Carbon Storage Program contains three key elements:
	- Infrastructure
	- Global Collaborations
	- Core Research and Development:
		- Monitoring, Verification and Accounting (MVA)
		- Geologic Storage
		- Simulation and Risk Assessment
		- $CO₂$ Utilization

NETL Carbon Storage Program

- This analysis supports the $CO₂$ Utilization Focus Area of the DOE-NETL Carbon Storage Program for use in screening current and future utilization technologies:
	- Cement
	- Polycarbonate Plastics
	- Mineralization
	- Enhanced Hydrocarbon Recovery

Screening Metrics

- Developed a set of 12 metrics for use in screening utilization technologies, grouped into 5 categories:
	- **Performance Metrics:**
		- $-$ CO₂ Utilization Potential
		- $-$ CO₂ Utilization Efficiency
		- $-$ CO₂ Utilization Intensity
		- Energy Utilization
		- $-$ CO₂ Integration Reaction Rate

Screening Metrics

• **Cost Metrics:**

- $-$ Cost per Ton CO₂ utilized
- Product Marketability
- Incremental Cost Reduction

• **Emissions Metrics:**

- $-$ CO₂ Emissions Reduction
- $-$ CO₂ Avoided Potential
- **Market Metric:**
	- Product Supply-Demand
- **Safety Metric:**
	- Relative Safety and Environmental Benefits 66 and 66

- Technology in development targets (1) production of a Portland Cement substitute, and (2) utilization of $CO₂$ in carbonation chemistry as a binding phase
	- Traditional Portland Cement production:

 $5CaCO₃ + 2SiO₂ \rightarrow 3CaO·SiO₂ + 2CaO·SiO₂ + 5CO₂$

Tricalcium Silicate Dicalcium Silicate

– Solidia Cement production:

 $CaCO₃ + SiO₂ \rightarrow CaSiO₃ + CO₂$ Solidia Cement

• Solidia Cement may also be mined as a naturally occurring mineral (Wollastonite)

• Cement processing comparison:

1Choate, William T. Energy and Emissions Reduction Opportunities for the Cement Industry. Columbia, MD : 2003.

- Utilization of $CO₂$ as a binding phase
	- Activation step for traditional Portland Cement Hydration

 $2Ca_3SiO_5 + 7H_2O \rightarrow 3CaO·2SiO_2·4H_2O + 3Ca(OH)_2 + 164.5 Btu$

– Activation step for Solidia Cement – Low-Temperature Solidification (LTS)

- Utilization of $CO₂$ as a binding phase (continued)
	- LTS reaction conditions:
		- Autoclave reaction vessel
		- Temperature: 90°C
		- Pressure: 20 psig
		- Reaction time: 19 hours
		- 65% carbonation translates to 0.25 tons $CO₂/$ ton cement (utilization)
		- Activation energy: 2.2 kcal/mol (7.87 Btu/mol)

• Complete system stages:

Images used with permission by Solidia

- Mixing, Molding, and Finishing stages mirror current concrete practice
- Dry and React stages total 22 hours

- Current performance/ path forward:
	- Total cycle emissions:
		- 0.77 (creation) 0.25 (carbonation) = 0.52 tons $CO₂$ / ton Solidia Concrete (net)
	- Mechanical strength properties compare/ exceed Portland Cement equivalent
	- Structural enhancements: increased thickness, rebar
	- $-$ Transition to 'flue gas-like' $CO₂$ source
	- Move towards optimized ambient LTS reaction conditions

Calculation Basis

• Reference case for CO₂ supply:

- Supercritical PC plant: 550 MW-net
- Conventional amine capture technology
- Available $CO₂$: 4.5 M tons/year (85% on-stream factor)
	- Allows for $CO₂$ available at pressure; no required cost addition
- Implicit assumption is co-location; no explicit assumption about $CO₂$ distribution network

• **Production evaluation basis:**

- 2011 U.S. Portland Cement production of 74.6 M tons
- Of concrete production: ~80% cast in place, ~20% precast
	- Assumption is 100% of concrete/cement market is accessible

Application of Metrics to Case Study

 $a - B$ ased on CO₂ available from 550 MW-net PC plant

Application of Metrics to Case Study

a – Approximate, based on discussion with Solidia

 $b - B$ ased on CO₂ available from 550 MW-net PC plant

Application of Metrics to Case Study

a – Based on synthetic SC production

 b – Based on natural SC production (Wollastonite reserves)</sup>

Metric Interpretation and Use

- **Use of metrics is dependent on the end goal of the developer:**
	- Is the scale large and is the goal to maximize $CO₂$ utilization?
		- Focus on Utilization Efficiency/ Potential/ Intensity
	- Is the scale small and is the goal to produce a product capable of offsetting the cost of implementing capture?
		- Focus on Integration Reaction Rate/ Cost per ton $CO₂$ Utilized/ Product Marketability
	- Are the traditional process operating characteristics or chemistry such that improvements in process safety outweigh marginal product economic gains?
		- Focus on Relative Safety and Benefits

Acknowledgements

This study was performed under the Energy Sector Planning and Analysis contract for the United States Department of Energy (DOE Contract Number DE-FE0004001).

The authors wish to acknowledge the following individuals who contributed to the study:

> Vladimir Vaysman, WorleyParsons James Simpson, WorleyParsons Richard Riman, Solidia Technologies

Questions?

• **Peter Kabatek**

peter.kabatek@contr.netl.doe.gov 610-855-2329

• **Alex Zoelle**

alexander.zoelle@contr.netl.doe.gov 412-386-7554

• **James Black**

james.black@netl.doe.gov 412-386-5458

• **Darin Damiani** darin.damiani@netl.doe.gov 304-285-4398

Backup Slides

CO₂ Utilization Potential

tons CO2 utilized to meet market demand tons CO2 available from reference plant CO2 Utilization Potential $\left(\frac{\%}{\%}\right) = \frac{\frac{100 \times 0.02 \text{ MHz}}{200}}{\frac{0.020 \times 1.00 \times 0.000}{200}} \times 100$

$$
= \frac{18.6 M \text{ tons CO2} / \text{year utilized}}{4.50 M \text{ tons CO2} / \text{year available}} \times 100
$$

= 413%

• *Equivalent to 4.1 of the reference plants' CO2 streams utilized*

CO₂ Utilization Efficiency

tons CO2 utilized (in - out) tons CO2 fed to process CO2 Utilization Efficiency (%) = $\frac{100.8 \text{ CO2} \text{ MHz}}{602 \text{ s L}} \times 100$

$$
= \frac{(145.0 - 109.3) M \text{ tons CO2} / year \text{ utilized}}{145.0 M \text{ tons CO2} / year \text{fed to process}} \times 100
$$

$$
= 24.6\%
$$

• *Based on a single pass of the process (no CO2 recycle)*

$CO₂$ Utilization Intensity

CO2 Utilization Intensity = $\frac{100.8 \text{ CO2} \text{ unit/sec}}{1 \text{ m} \cdot \text{c}} x \%$ *Carbonation*

tons CO2 utilized tons product produced

44.01 ton CO2 116.16 ton Solidia Cement $=$ $\frac{44.01 \text{ to } x \text{ to } 2}{116.16 \text{ to } 8.111 \text{ s}} \times 65\%$

= 0.25 ton CO2 / ton Solidia Cement

tons CO2 utilized tons product produced CO2 Utilization Intensity = $\frac{100.8 \text{ C} 52 \text{ times}}{1 - 1}$ *x % Carbonation*

> *44.01 ton CO2 100.08 ton Solidia Concrete* $=$ $\frac{10000}{10000}$ *x* 65%

= 0.28 ton CO2 / ton Solidia Concrete

CO₂ Emission Reduction

tons CO2 emitted in traditional - tons CO2 emitted in new pathway tons CO2 emitted in traditional pathway 1.2 tons CO2/ton Portland Cement - 0.77 tons CO2/ton Solidia Cement 1.2 tons CO2/ton Portland Cement tons CO2 emitted in traditional - tons CO2 emitted in new pathway tons CO2 emitted in traditional pathway 1.2 tons CO2/ton Portland Cement - 0.52 tons CO2/ton Solidia Concrete 1.2 tons CO2/ton Portland Cement $CO2$ Emission Reduction $\left(\frac{\%}{\%}\right) = \frac{100.8 \text{ C} \times 2 \text{ emb}}{2.88 \text{ m} \times 100 \text{ m}} \times 100$ $=$ $\frac{1.2 \text{ tons } \text{C} 22/10011011 \text{ atm}}{1.2 \text{ kg} 2.0001101 \text{ m}} \times 100$ $CO2$ Emission Reduction $\left(\frac{\%}{\%}\right) = \frac{\frac{1}{100}}{200}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $=$ $\frac{1.2 \text{ tons CO2/ion1} \cdot \text{Total}}{1.2 \times 10^{24} \cdot \text{R}} \cdot \frac{1.2 \text{ rad}}{1.2 \times 10^{24} \cdot \text{R}} \cdot \frac{1.2 \text{ rad}}{1.2 \times 10^{24} \cdot \text{R}} \times 10^{24} \cdot \text{R}$ *= 35.8% for Solidia Cement*

= 56.7% for Solidia Concrete

CO₂ Avoided Potential

tons of CO2 avoided to meet market demand tons of CO2 available from reference plant $CO2$ Avoided Potential $\left(\frac{\%}{\%}\right)$ = $\frac{\cos \theta}{\cos \theta}$ x 1.11 $\frac{\%}{\%}$ $\frac{\%}{\%}$ x 100

> *89.6 M tons PC CO2 emitted/year - 57.5 M tons SC CO2 emitted/year 4.50 M tons CO2 / year available* $=$ $\frac{33.6 \text{ m} \cos 1 \cos 2 \text{ cm}}{4.50 \text{ M}} \times 100$

= 711%

• *Equivalent of 7.1 reference plants' CO2 streams avoided*

Product Supply-Demand Metric

• *Synthetic SC production can meet PC market production, thus Product Supply-Demand Metric is 100% (CO2 supply is not limiting)*

tons per year of product that can be produced tons per year of market demand for that product Product Supply-Demand Metric (%) = x 100

> *45.0 M tons / year of natural SC (Wollastonite) 74.6 M tons / year of PC production = x 100*

= 60.3% based on limited Wollastonite reserves

Relative Safety and Benefits

• **Example of Relative Safety and Benefits**

- Traditional Process: Partial Oxidation of Propylene
- $-$ Proposed Process: $CO₂$ Reforming with Ethylene
- **NFPA Feedstock Analysis:**

0 – No Risk 4 – Very High Risk

• **Cost:**

• **Result:** Ethylene feedstock poses higher Health and Reactivity risks, but the nature of the overall proposed process is safer, and ethylene provides an economic benefit as a starting material over propylene

Bituminous Baseline Case 12: SC PC

