Comprehensive, Quantitative Risk Assessment of CO₂ Geologic Sequestration

Project Number DE-FE0001112

Jim Lepinski
Headwaters Clean Carbon Services LLC

U.S. Department of Energy

National Energy Technology Laboratory
Carbon Storage R&D Project Review Meeting
Developing the Technologies and Building the
Infrastructure for CO₂ Storage
August 20-22, 2013

Presentation Outline

- Benefits to the Program
- Project Overview: Objectives and Goals
- Project Team
- QFMEA Model
- Quantitative Risk Assessment Methodology
- Quantitative Risk Assessments Completed
 - SACROC Northern Platform CO₂-EOR Site
 - Farnsworth Unit CO₂-EOR Site
 - Pump Canyon CO₂-ECBM Site
- Accomplishments to Date
- Summary

Benefit to the Program

Program goals being addressed

- Develop and validate technologies to ensure 99 percent storage performance.
- Develop Best Practice Manuals for MVA; site screening, selection and initial characterization; public outreach, well management activities, and risk analysis and simulation

Project benefits statement

This project developed a comprehensive, quantitative CO₂ risk assessment tool, based on a Quantitative Failure Modes and Effects Analysis (QFMEA) model, that can be customized to assess site-specific projects, integrated with other CO₂ storage assessment tools, and easily modified, improved or expanded. This tool helps identify and characterize risks and risk prevention/mitigation steps, and estimate associated costs to safely store CO₂ in deep saline aquifers (DSA), enhanced oil recovery (EOR) and enhanced coal bed methane (ECBM).

3

HCCS Project Overview: Objectives & Goals

Project Objectives

 The primary objective of this project is to develop and apply an innovative, advanced, process-based risk assessment model and protocol to determine quantitative risks and predict quantitative impacts for CO₂ geologic sequestration project sites. The model shall be capable of integration with advanced simulation models and MVA technologies.

Project goals

- Identify and characterize technical and programmatic risks for CO₂ capture, transportation and sequestration in DSA, EOR and ECBM.
- Employ probabilistic calculations, process- and system-level simulation models, and shortcut calculations to quantify risks
- Develop a Quantitative Failure Modes and Effects Analysis (QFMEA) model.
- Estimate capital, operating and closure costs, potential damage recovery costs, risk mitigation costs and potential cost savings with risk mitigation.
- Conduct quantitative risk assessments on three different sites.

Project Team

- Headwaters Clean Carbon Services LLC Risk identification and characterization, QFMEA development, financial modeling, estimating potential damage recovery costs and mitigation costs. Project management. Review of overall work product.
- FAULKNER & FLYNN
 ENVIRONMENTAL MANAGEMENT CONSULTANTS
- MMA/Faulkner & Flynn Refining QFMEA, financial model, estimates of potential damage recovery costs and mitigation costs. Development of insurance schedule for CO₂ sequestration. Review of overall work product.

 The University of Utah – Process-level modeling and probability calculations. Review of overall work product.

 Los Alamos National Laboratory – System-level modeling. Review of overall work product.

QFMEA Model

Quantitative Risk Assessment Methodology

- 1. Gather site-specific information
- 2. Input site-specific information into the QFMEA model
- 3. Identify information gaps or uncertainties
- 4. Adjust failure modes, causes, severity, and methods of detection for site-specific conditions.
- 5. Eliminate risk areas that are not applicable
- 6. Input site-specific risk prevention and mitigation steps
- 7. Run simulation and financial models to quantify probability, severity and cost factors.
- 8. Input damage recovery costs (w/o and w/ risk mitigation), risk mitigation costs and potential cost savings.
- 9. Rank and prioritize risk areas based on probability, severity and detectability.
- 10. Submit results to a cross-functional team of experts for review.
- 11. Use results to manage risks during design, construction, operation and closure.
- 12. Update and revise as more information becomes available or conditions change.

Ranking Factors for Risks

Ranking Factor	Probability of Failure Occurring	Severity of Failure Effect	Difficulty of Detecting Failure Early
5	Likely – frequency ≥1x10 ⁻¹ per year (one event every 1 to 10 years)	Catastrophic – Multiple fatalities. Damages exceeding \$100M. Project shut down.	Almost Impossible – No known control(s) available to detect failure early.
4	Possible – frequency from 1x10 ⁻² to 1x10 ⁻¹ per year (one event every 10 to 100 years)	Serious – Isolated fatality. Damages \$10M-\$100M. Project lost time greater than 1 year.	Low – Low likelihood current control(s) will detect failure early.
3	Unlikely – frequency from 1x10 ⁻⁴ to 1x10 ⁻² per year (one event every 100 to 10,000 years)	Significant – Injury causing permanent disability, Damages exceeding \$1M to \$10M. Project lost time greater than 1 month. Permit suspension. Area evacuation.	Moderate - Moderate likelihood current control(s) will detect failure early
2	Extremely Unlikely – frequency from 1x10 ⁻⁶ to 1x10 ⁻⁴ per year (one event every 10,000 to 1,000,000 years)	Moderate – Injury causing temporary disability. Damages \$100k to \$1M. Project lost time greater than 1 week. Regulatory notice.	High – High likelihood current control(s) will detect failure early
1	Incredible – frequency <1x10 ⁻⁶ per year (less than one event every 1,000,000 years)	Light – Minor injury or illness. Damages less than \$100k. Project lost time less than 1 week.	Almost Certain – Current control(s) almost certain to detect the failure early. Reliable detection controls are known with similar processes.

Quantitative Risk Assessments Completed

Pump Canyon CO₂-ECBM
 Site in the San Juan Basin
 (San Juan County, NM)

Farnsworth Unit CO₂-EOR
 Site in the Anadarko Basin
 (Ochiltree County, TX)

Source: McPherson 2009

 Mature, SACROC Northern Platform CO₂-EOR Site in the Permian Basin (Scurry County, TX)

Comparison of SACROC Unit and Farnsworth Unit CO₂-EOR Operations

Site:	SACROC Unit	Farnsworth Unit
Location	Scurry County, TX	Ochiltree County, TX
Basin	Permian Basin	Anadarko Basin
Owner/operator	Kinder Morgan	Chaparral Energy
Type of operation	Mature CO ₂ -EOR	Early CO ₂ -EOR.
Start of CO ₂ -EOR	January 1972	December 2010
Reservoir lithology	Carbonate	Sandstone
Reservoir depth	2,042 m (6,700 ft)	2,408 m (7,900 ft)
Reservoir thickness	15 to 244 m (50 to 800 ft)	3 to 16.5 m (10 to 54 ft)
Average net pay	48.8 m (160 ft)	6.9 m (22.5 ft)
thickness		
Reservoir area	202 km ² (50,000 acres)	51.4 km ² (12,698 acres)
Formation fluid	159,000 mg/L TDS	4,000 mg/L TDS
salinity		
CO ₂ type	Natural	Anthropogenic
CO ₂ injection rate	Purchased: 6,312 t/d	Purchased: 526 t/d
	Recycled: 46,291 t/d	Recycled: 105 t/d
Oil production	28,000 STB/d	1,000 STB/d

SACROC Northern Platform Geologic Model

Source: Han 2010

CO₂-EOR Financial Modeling

- Fluid volumes injected and produced (hydrocarbon pore volumes)
- CO₂ purchased, injected and recovered
- Oil, HC, NG and NGL produced and recovered
- Water injected, recovered and disposed
- Power consumption and generation
- Labor
- Active wells
- Capital expenses
- Prices
- Sales volumes
- Revenues
- Operating expenses
- Earnings

SACROC Unit History 2002-2011

Year	2002	2003	2004	2005	2006	2007	2008	2909	2010	2011	Total
Fluids Injected	0.000	0.04000	0.000	2.600	4 4447		4 447		4.840	4.44***	A 04777
CO2 injected (HCPV)	0.00904	0.01692	0.02918	0.02618	0.03666	0.03989	0.03727	0.04126	0.04284	0.04284	0.31794
Water injected (HCPV) Total fluids injected (HCPV)	0.02979	0.04400	0.06800	0.07763	0.05567	0.05451	0.09355	0.09731	0.09249	0.09249	0.78425
Fluids Produced	0.02373	0.04400	0.00000	9,01103	0.03243	9,03143	0.09995	9,09131	0.03243	0.03243	0.70423
Oil produced (HCPV)	0.00173	0.00265	0.00375	0.00426	0.00407	0.00365	0.0037	0.00399	0.00386	0.00378	0.03644
Water produced (HCPV)	0.61798	0 02528	0.03882	0.05145	0.05687	0.05451	0.06138	0.05605	0.04965	0.04965	0.46174
CO2 produced (HCPV)	0.00315	0.00728	0.01465	0.01512	0.02498	0.02775	0.02518	0.03042	0.03342	0.03625	0.21921
Total fluids produced (HCPV)	0.02286	0.03521	0.05722	0.07083	0.08592	0.08532	0.09126	0.09346	0.08693	0.08968	0.71639
Carbon Dioxido (CO2)											
CO2 injected [MOF/D]	210,575	315,000	681,000	\$10,959	830,000	860,000	870,000	563,014	1,000,000	1,000,000	
CO2 produced (MCF/D)	73.526 137.449	173,000	342,000	352,959	583,000	648,000	611,000	710,014	780,000	846,000	
CO2 purchased (MCF/D)	77.005.875	225,000	339,000	258,000	247,000	212,000	259,000 317,660,000	253,000 361,600,110	220,000 365,000,000	154,000	2 708 546 020
CO2 injected (MCF) CO2 produced (MCF)	26,836,990	62,050,000	124 830 000	128,330,035	212,795,000			259,155,110	284.700.000	365,000,000	1.867.522.135
CO2 purchased (MCF)	50,158,885	82,125,000	123,735,000	54,170,000	90,155,000	77.380.000	94,535,000	92,345,000	80,300,000	55,210,000	841,123,885
CO2 purchased (HCPV)	0.00489	0.00964	0.01462	0.01106	0.01058	0.00938	0.0111	0.01384	0.00943	0.0066	0.09873
Oil, Hydrocarbons and Natural G		0.00334	0.01450	9.01193	4.01039	4.00777	0.0111	4.01100	0.00345	0.000	0.00007
Oil produced (CTE/D)	13.050	23,056	28.340	32,200	30.7%	27,634	27,995	30,145	25,222	20,627	
HC produced (MCF/D)	18.609	43,000	59,000	71,000	73,000	73,000	70,000	81,000	74,000	72,500	
NGL produced (STB/D)	0	3,700	7,700	9,433	8,900	9,630	8,300	9,400	10,000	8,500	
Oil produced (STE)	4,766,536	7,320,440	10,344,100	11,763,000	11,240,175	10,075,450	10,218,176	11,064,385	10,666,030	10,448,855	97,837,156
HC produced (MCF)	6,792,285	17,529,000	21,535,000	25,915,000	26,645,000	26,645,000	25,550,000	29,565,000	27,010,000	26,462,500	233,639,785
NGL produced (STB)	0	1,350,500	2,810,500	3,431,000	3,248,500	3,564,000	3,029,500	3,431,000	3,650,000	3,102,500	
Gross BOE produced (STB)	4,766,536	8,673,943	13,154,600	15,184,000	54,488,675	13,579,463	13,247,676	14,435,385	14,316,030	13,561,366	125,394,655
Water	229,505	333,000	430,000	570,000	630,025	605,000	680,000	620,959	550,000	550,000	
Water injected (STB/D) Water produced (STB/D)	199,170	293,000	430,000	570,000	630,025	605,000	680,000	620,959	550,000	550,000	
Water injected (STB)	83 915 325	109.500.000	156 950 000	208.050,000	229,959,125	220.825,000	248 200 000	226,650,035	200 750 000	200,750,000	1 885 549 485
Water produced (STB)	72,697,060	102,200,000		208,060,000						200,750,000	1.867.022.085
Expansion Capital							2.0000				
Expansion Capital (5)	183,000,000	244,000,000	276,000,000	156,000,000	204,000,000	256,000,000	347,000,000	258,000,000	227,000,000	257,000,000	2,450,000,000
COZ capex incl. in opex (5)	14,045,080	29,975,260	52,552,700	59,294,250	71,985,300		88,811,800	65,481,000	76,368,950	63,663,300	579,293,840
Wall wark incl. in opex (\$)	0	0	26,276,360	20,386,960	66,933,700	66,444,500	81,891,400	62,888,600	63,633,660	46568626	424,142,776
Gas handing incl. in opex (\$)	0	0	25,585,750	43,482,450	36,624,100	57,115,200	55,363,200	36,518,258	52,501,900	49,515,500	371,186,750
Net capex (\$)	168,953,520	214,024,740	159,185,200	62,917,350	28,456,900	76,325,133	120,933,600	103,112,250	44,215,300	97,252,275	1,075,376,635
Prices	26.18	31.08	41.51	56.54	66.05	72.34	99.67	61.96	79.48	94.88	
WTI spot price (\$/BEL)	26.16	23.73	25.72	27.36	31.42	72.34 36.05	49.42	49.55	79.48 59.96	69.73	
Weighted avg oil price (\$/88L) Weighted avg NGL price (\$/88L)	18.33	21.77	31.33	39.98	43.9	52.91	49.42	49.55 37.96	51.03	65.61	
Sales Volume	19.33	21.11	31.33	32.33	40.7	34.31	93	27.30	51.90	00.01	
Net Oil calcs (STB/D)	10,317	15,900	23,600	26,700	26,700	23,000	23,300	26,100	24,300	23,800	
Net NOL Sales (STD/D)	0	3,700	7,700	9,400	8,900	9,600	0.300	5,400	10,000	0,500	
Net BOE sales (STB/D)	10.317	19,600	31,300	36,100	34,600	32,633	31,600	34,500	34,300	32,300	
Net Oil sales (STB)	3,765,705	5,813,500	8,514,000	9,745,500	9,380,500	8,395,000	8,504,500	9,161,500	8,869,500	8,687,000	80,926,705
Net NGL Sales (STE)	0	1,350,500	2,810,500	3,431,000	3,248,500	3,584,000	3,029,500	3,431,000	3,660,000	3,102,600	27,567,500
Net BOE sales (STB)	3,765,706	7,154,000	11,424,500	13,176,500	12,629,000	11,899,000	11,534,000	12,592,500	12,519,500	11,789,500	108,484,205
Revenues											
Of revenue (5)											3,319,625,597
NGL ravenue (\$)	0	29,433,386	99,052,965 244,035,045	127,171,390	142,609,150	106,396,643	190,868,600	130,240,760	799,269,600	203,666,026	1,293,644,306 4,613,169,902
Total sevenue (\$)	84,540,077	167,117,440	303,505,045	403,999,293	437,344,450	400,036,333	611,150,030	584,153,985	790,074,720	009,259,535	4,613,169,902
Expenses Taxes other than income (\$/BOE)	0.87	0.88	1.00	1.70	2 00	2.30	2.20	0.00	2.00	1.75	
Power (\$/BOE net)	2.90	2.56	. 00	10	- 00	2.50	2.20	2.00	2.00	2.10	
Well work (\$/BOE net)		2.00	2.30	2.30	5.30	5.50	7.10	4.20	4.30	3.95	
CO2 removal (\$/BOE net)	0.74	0.61									
CO2 capitalized (S/BOE net)	3.73	4.19	4.60	4.50	5.70	4.80	7.70	5.20	5.10	5.40	
CO2 expensed (SEIOE net)	2.09	2.36	2.60	2.50	3.50	2.50	4.60	2.60	3.20	2.83	
Gas handing (\$/DCE net)			3.50	3.30	2.90	4,00	4.00	2.90	4.20	4.20	
Labor (\$/BOE ret)	0.99	0.73	0.30	0.50	0.50	0.75	1.00	0.75	1.30	1.55	
Other (S/BOE net)	2.83	1.91	0.90	1.30	1.90	1.63	2 30	1.38	1 20	1.30	
Total expenses (S/BOE net)	13.28 49.989.966	12.35 88,353,404	15.20	16.10	21.80	22.25	29.70	16.85	22.30	21.38	2 100 100 100
Total expenses (S) Earnings	49,909,966	68,358,404	173,552,400	212,141,650	215,312,200	264,752,750	J42,555,890	212,183,625	219,104,850	252,059,510	2,150,195,155
Calculated EBITDDA* (5)	34,550,111	78 759 GW	135,952,645	191,566,510	162 032 260	223,283,540	268 591 090	372,009,460	438.889.810	557 240 876	2.462.974.748
KM reported EBITOCA (\$)**	31,300,000	72,500,000	112,000,000			162,000,000				693,000,000	
Purchased CO2 Cost Analysis	7.500										
C02 cost (\$/80E ret)	5.82	6.55	7.20	7.00	9.20	7.33	12.30	7,70	9.30	8.23	
CO2 cost (S)	21,916,403	46,858,700	82,256,400	52,235,500	116,186,800	86,862,733	141,868,200	96,962,250	116,431,350	97,027,585	
CO2 cost (SMCF)	0.44	0.57	0.66	0.98	1.29	1.12	1.50	1.05	1.45	1.73	
CO2 cost % of WTI	1.67	1.84	1.60	1.73	1.95	1.55	1.51	1.69	1.82	1.82	
Revenue Analysis											
Calculated revenue (S/E/OE net)	22.45	23.36	27.10	30.55	34.53	41.01	52.99	46.39	57.36	68.65	
KM reported revenue (\$/BOE net)	maistin des	ation and a	fination (s)	alled district	36.50	39.53	62.00	47.50	68.00	and and are	
*Earnings before interest, taxes, de	estuation, depi	toon and amo	exetion (also c	and districts	wer cash now)		riculary SA	uniou senice	e d remailin	g oil and gas a	uemā

SACROC Unit Projection 2012-2021

SACROC Northern Platform CO₂-EOR Site Top 10 Risk Areas

R a n k	Risk Area/FEP	Failure Probability (P = 1 to 5)	Failure Severity (S = 1 to 5)	Difficulty of Failure Detection (D = 1 to 5)	Risk Priority Number (PxSxD = 1 to 125)
1	Hedging	5	4	3	60
2	Price of oil (or other related commodities)	4	4	3	48
3	EOR oil reservoir heterogeneity	5	4	2	40
4	Precipitation of carbonate minerals (scale buildup)	5	4	2	40
5	Loss of containment	4	3	3	36
6	EOR viscosity relations	4	4	2	32
7	EOR hydrocarbon precipitation	4	4	2	32
8	Reservoir water chemistry	4	4	2	32
9	Formation damage	3	3	3	27
10	EOR injection and production well pattern and spacing	3	4	2	24

HSE risk

Economic risk

SACROC Northern Platform CO₂-EOR Site Top 10 Potential Fatal Risk Areas

R a n k	Risk Area/FEP	Failure Probability (P = 1 to 5)	Failure Severity (S = 1 to 5)	Difficulty of Failure Detection (D = 1 to 5)	Risk Priority Number (PxSxD = 1 to 125)
1	Accidents and unplanned events	3	4	2	24
2	Excavation/drilling	3	4	2	24
3	Pipeline rupture	3	4	2	24
4	Explosions and crashes	2	5	2	20
5	CO ₂ release processes	2	4	2	16
6	CO ₂ release to the atmosphere	2	4	2	16
7	Health effects of CO ₂	2	4	2	16
8	Elevated CO ₂ in air	2	4	2	16
9	Toxicity of contaminants (H ₂ S)	2	4	2	16
10	Moving equipment	2	4	2	16

SACROC Northern Platform CO₂-EOR Site Risk Assessment Conclusions

- Over 40 years of successful (safe) CO₂-EOR operation
- "Not significant" environmental risk due to nearly ideal subsurface* and surface** conditions, long-term operating experience and extent of technical knowledge.
- Top four risks (hedging, oil price, reservoir heterogeneity, and scale buildup) impact profitability rather than health, safety or environment.
- 639 deep wells penetrate the caprock, but operator has a preventative maintenance program for evaluating and reworking "at risk" wells.
- The presence of H₂S in the reservoir increases the toxicity of recycled gas, but also helps earlier detection of small to moderate leaks.
- *Deep reservoir, balanced injection/production, intact caprock, multiple stacked seals and sinks, and no significant faults.
- **Sparse population, no sensitive receptors, and no significant environmental targets.

Farnsworth Unit CO₂-EOR Site Geologic Model

Farnsworth Unit CO₂-EOR Site Top 10 Risk Areas

R a n k	Risk Area/FEP	Failure Probability (P = 1 to 5)	Failure Severity (S = 1 to 5)	Difficulty of Failure Detection (D = 1 to 5)	Risk Priority Number (PxSxD = 1 to 125)
1	Price of oil (or other related commodities)	4	4	3	48
2	Hedging or derivative positions	4	3	3	36
3	Formation damage	3	3	3	27
4	Loss of containment	3	3	3	27
5	Extreme weather event causing human injury/death	3	4	2	24
6	Accidents and unplanned events	3	4	2	24
7	Excavation/drilling	3	4	2	24
8	Pipeline rupture	3	4	2	24
9	Caprock fracture pressure	2	4	3	24
10	Leaks and spills (oil spills)	2	4	3	24

HSE risk

Economic risk

Farnsworth Unit CO₂-EOR Site Top 10 Potential Fatal Risk Areas

R a n k	Risk Area/FEP	Failure Probability (P = 1 to 5)	Failure Severity (S = 1 to 5)	Difficulty of Failure Detection (D = 1 to 5)	Risk Priority Number (PxSxD = 1 to 125)
1	Extreme weather event causing human injury/death	3	4	2	24
2	Accidents and unplanned events	3	4	2	24
3	Excavation/drilling	3	4	2	24
4	Pipeline rupture	3	4	2	24
5	Explosions and crashes	2	5	2	20
6	CO ₂ release processes	2	4	2	16
7	CO ₂ release to the atmosphere	2	4	2	16
8	Health effects of CO ₂	2	4	2	16
9	Elevated CO ₂ in air	2	4	2	16
10	Buildings	2	4	2	16

Farnsworth Unit CO₂-EOR Site Risk Assessment Conclusions

- The CO₂-EOR operation represents a "not significant" environmental risk.
 - The caprock is intact.
 - Multiple stacked sinks and seals separate the reservoir from the Ogallala aquifer.
 - The surface is flat cropland and sparsely populated.
 - There are no sensitive receptors or significant environmental targets nearby.
- 169 deep wells penetrate the caprock. This will require a preventative maintenance program for evaluating and reworking "at risk" wells.
- Extreme weather (tornadoes) is a more significant risk at this Site than the other sites.
- The presence of H₂S in the reservoir increases the toxicity of recycled gas, but also helps earlier detection of small to moderate leaks.
- The planned injection of 2.9 million tonnes of purchased CO₂, from 2011 through 2024, in the West side of the Farnsworth Unit, represents 0.3 Hydrocarbon Pore Volume (HCPV). This is consistent with current best practices for CO₂-EOR operation.

Pump Canyon CO₂-ECBM Geologic Model

Pump Canyon CO₂-ECBM Three Site Reference Areas

Pump Canyon CO₂-ECBM Three Site Reference Areas

	One-Section Area Nine-Section		Sixteen-
	(Section 32)	Area	Township Area
Area	2.59 km ²	23.3 km ²	1,424 km ²
	1 mi ²	9 mi ²	550 mi ²
Estimated coal in place	56.7 Mt	510 Mt	28 Gt
Estimated original methane gas in place	22.5 BCF	200 BCF	9 TCF
Initial # of CBM wells	Production: 4	Production: 36	Production: 684
Final # of CO ₂ -ECBM wells	Production: 2 Injection: 2	Production: 18 Injection: 18	Production: 324 Injection: 324
CO2-ECBM capital expense	\$740,000	\$9,386,000	\$151,148,000
CO ₂ purchase over 10 yrs	260,000 t 4.9 BCF	2,360,000 t 44.9 BCF	31,500,000 t 599 BCF
Methane prod. over 10 yrs (CO ₂ -ECBM mode)	1.9 BCF	17.5 BCF	247 BCF
Methane prod. over 10 yrs (CBM mode)	0.7 BCF	6.5 BCF	118 BCF

Pump Canyon CO₂ Sequestration Three Site Reference Areas

	One-Section Area	Nine-Section	Sixteen-Township
	(Section 32)	Area	Area
Area	2.59 km ²	23.3 km ²	1,424 km ²
	1 mi ²	9 mi ²	550 mi ²
Estimated coal in place	56.7 Mt	510 Mt	28 Gt
Estimated original	637 Mm ³	5.66 Gm ³	256 Gm ³
methane gas in place	22.5 BCF	200 BCF	9 TCF
Number of existing	Active: 10	Active: 76	Active: 5,308
deep wells	Shut in: 1	Shut in: 1	Shut in: 25
	Plugged: 2	Plugged: 8	Plugged: 797
	Total: 13	Total: 85	Total: 6,201
Estimated CO ₂	562,239 t	5 million t	82 million t
adsorption capacity at	10.7 BCF	95 BCF	1.6 TCF
2.83 MPa (411 psia)	10.7 DOI	33 DOI	1.0 101
Estimated number of CO ₂ wells needed	4 injection wells	36 injection wells	648 injection wells

CO₂-ECBM and CBM Financial Modeling

- CO₂ purchased, injected and recovered
- Methane produced and recovered
- Water produced and disposed
- Number of injection and production wells
- Capital expenses
- Prices
- Sales volumes
- Revenues
- Operating expenses
- Gross margin

CO2-ECBM FINANCIAL MODEL								_			
Year	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
Year (#)	2012	2013	2014	2013	2016	2017	2016	2013	2020	2021	10
PERFORMANCE PARAMETERS	0	'			4	3		- 1	0	3	10
CO2 purchased (t/v)	0	236,000	236,000	236,000	236.000	236.000	236,000	236,000	236.000	236.000	236,000
Estimated CO2 produced and recycled (t/v)	0	32,765	62.011	66,911	67,050	66.334	65,533	64,790	64,126	63.537	63.015
CO2 injected (t/v)	0		298,011	302,911	303,050	302,334	301,533	300,790	300,126	299,537	299,015
CO2 injected (t/y) Calculated CO2 produced and recycled (t/v)	0		62.011	66,911	67,050	66.334	65,533	64,790	64,126	63.537	63.015
Number of production wells (#)	36										
	0	20 16		18 18	18 18	18	18 18	18 18	18 18	18 18	18 18
Number of injection wells (#)	36	36		36	36	18 36	36	36	36	36	36
Total number of active wells (#)	36	0		36 0	36	36	36	36	36	36	0
Number of new wells (#)	0	16		18	18	18	18	18	18	18	18
Number of well conversions (#)			470.974			326,457			226,285	200.262	
CH4 production from CBM (MCF)	1,202,652	591,304		416,812	368,878		288,915	255,689			177,232
CH4 production from ECBM (MCF)	4 000 050	1,277,306		1,439,585	1,440,245	1,436,842	1,433,036	1,429,504	1,426,349	1,423,550	1,421,069
Total CH4 production (MCF)	1,202,652	1,868,610		1,856,396	1,809,123	1,763,300	1,721,950	1,685,194	1,652,634	1,623,812	1,598,301
Water production (Barrels)	962	1495	1840	1877	1850	1815	1781	1750	1723	1699	1678
In situ CO2 production (MCF)	400,884	622,870	156,991	138,937	122,959	108,819	96,305	85,230	75,428	66,754	59,077
Injected CO2 production (MCF)	0	0	1,021,845	1,133,038	1,151,668	1,152,196	1,149,474	1,146,428	1,143,604	1,141,079	1,138,840
Total CO2 production (MCF)	400,884	622,870		1,271,975	1,274,627	1,261,015	1,245,779	1,231,658	1,219,032	1,207,833	1,197,917
Total gas production (MCF)	1,603,536	2,491,479		3,128,371	3,083,750	3,024,315	2,967,729	2,916,852	2,871,666	2,831,645	2,796,218
CH4 in produced gas (vol. %)	75	75		59	59	58	58	58	58	57	57
CO2 in produced gas (vol. %)	25	25	38	41	41	42	42	42	42	43	43
CAPITAL EXPENDITURES											
Permitting (\$)	272,000	34,000	0	0	0	0	0	0	0	0	0
Hot tap into CO2 pipeline (\$)	100,000	0		0	0	0	0	0	0	0	0
CO2 trunk pipeline (\$)	1,200,000	0	0	0	0	0	0	0	0	0	0
CO2 lateral pipeline (\$)	1,800,000	0		0	0	0	0		0	0	0
CO2 distribution lines (\$)	800,000	100,000		0	0	0	0		0	0	0
New well drilling & completion (\$)	0	0	0	0	0	0	0	0	0	0	0
Converted wells (\$)	2,560,000	320,000	0	0	0	0	0		0	0	0
Recycled gas compression and dehydration (\$)	2,200,000	0	0	0	0	0	0	0	0	0	0
Total capital expenditures (\$)	8,932,000	454,000	0	0	0	0	0	0	0	0	0
REVENUE											
CH4 sales (MCF)	1,142,519	1,775,179		1,763,576	1,718,667	1,675,135	1,635,853	1,600,934	1,570,002	1,542,621	1,518,386
CH4 sales (\$)	4,570,078	7,100,716		7,054,305	6,874,669	6,700,538	6,543,411	6,403,737	6,280,009	6,170,486	6,073,544
Total revenues (\$)	4,570,078	7,100,716	7,171,629	7,054,305	6,874,669	6,700,538	6,543,411	6,403,737	6,280,009	6,170,486	6,073,544
OPERATING EXPENSES											
Purchased CO2 cost (\$)	0	7,627,520		7,627,520	7,627,520	7,627,520	7,627,520	7,627,520	7,627,520	7,627,520	7,627,520
Well O&M (\$)	432,000	432,000	432,000	432,000	432,000	432,000	432,000	432,000	432,000	432,000	432,000
Injection well CO2 maintenance (\$)	0	67,191	74,503	75,728	75,763	75,584	75,383	75,198	75,032	74,884	74,754
Produced gas processing (\$)	801,768	1,245,740	1,533,053	1,564,186	1,541,875	1,512,157	1,483,865	1,458,426	1,435,833	1,415,823	1,398,109
Recycled gas compression & dehydration	0	229,355	434,077	468,377	469,350	464,338	458,731	453,530	448,882	444,759	441,105
Water treatment and disposal (\$)	481	747	920	939	925	907	890	875	861	849	839
General & administrative costs (\$)	500,000	500,000	500,000	500,000	500,000	500,000	500,000	500,000	500,000	500,000	500,000
Royalties (\$)	388,457	603,561	609,588	599,616	584,347	569,546	556,190	544,318	533,801	524,491	516,251
Severance & property taxes (\$)	388,457	603,561	609,588	599,616	584,347	569,546	556,190	544,318	533,801	524,491	516,251
Total operating expenses (\$)	2,511,162	11,309,675	11,821,250	11,867,981	11,816,127	11,751,598	11,690,769	11,636,184	11,587,730	11,544,818	11,506,829
GROSS MARGIN (\$)	2,058,915	-4,208,959	-4,649,621	-4,813,675	-4,941,458	-5,051,059	-5,147,358	-5,232,447	-5,307,720	-5,374,332	-5,433,285
, , , , , , , , , , , , , , , , , , , ,											

CBM FINANCIAL MODEL (NO CO2 INJECTION)											
Year	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
Year (#)	0	1	2	3	4	5	6	7	8	9	10
PERFORMANCE PARAMETERS											
Number of production wells (#)	36	36	36	36	36	36	36	36	36	36	36
CH4 production from CBM (MCF)	1,202,652	1,064,347	941,947	833,623	737,757	652,915	577,829	511,379	452,570	400,525	354,464
In situ CO2 production (MCF)	400,884	354,782	313,982	277,874	245,919	217,638	192,610	170,460	150,857	133,508	118,155
Total gas production (MCF)	1,603,536	1,419,129	1,255,929	1,111,498	983,675	870,553	770,439	681,839	603,427	534,033	472,619
Water production (Barrels)	962	851	754	667	590	522	462	409	362	320	284
CH4 in produced gas (vol. %)	75.00	75.00	75.00	75.00	75.00	75.00	75.00	75.00	75.00	75.00	75.00
CO2 in produced gas (vol. %)	25.00	25.00	25.00	25.00	25.00	25.00	25.00	25.00	25.00	25.00	25.00
CAPITAL EXPENDITURES											
Total capital expenditures (\$)	0	0	0	0	0	0	0	0	0	0	0
REVENUE											
CH4 sales (MCF)	1,142,519	1,011,130	894,850	791,942		620,269	548,938	485,810	429,942	380,499	336,741
CH4 sales (\$)	4,570,078	4,044,519	3,579,399	3,167,768	2,803,475	2,481,075	2,195,752	1,943,240	1,719,768	1,521,994	1,346,965
Total revenues (\$)	4,570,078	4,044,519	3,579,399	3,167,768	2,803,475	2,481,075	2,195,752	1,943,240	1,719,768	1,521,994	1,346,965
OPERATING EXPENSES											
Well O&M (\$)	432,000	432,000	432,000	432,000	432,000	432,000	432,000	432,000	432,000	432,000	432,000
Produced gas processing (\$)	801,768	709,565	627,965	555,749	491,838	435,276	385,220	340,919	301,714	267,017	236,310
Water treatment and disposal (\$)	481	426	377	333	295	261	231	205	181	160	142
General & administrative costs (\$)	500,000	500,000	500,000	500,000	500,000	500,000	500,000	500,000	500,000	500,000	500,000
Royalties (\$)	388,457	343,784	304,249	269,260	238,295	210,891	186,639	165,175	146,180	129,370	114,492
Severance & property taxes (\$)	388,457	343,784	304,249	269,260	238,295	210,891	186,639	165,175	146,180	129,370	114,492
Total operating expenses (\$)	2,511,162	2,329,559	2,168,839	2,026,603	1,900,723	1,789,320	1,690,728	1,603,475	1,526,255	1,457,916	1,397,435
GROSS MARGIN (\$)	2,058,915	1,714,960	1,410,560	1,141,165	902,751	691,755	505,023	339,765	193,512	64,078	-50,471

Pump Canyon CO₂-ECBM Site Top 10 Risk Areas

R a n k	Risk Area/FEP	Failure Probability (P = 1 to 5)	Failure Severity (S = 1 to 5)	Difficulty of Failure Detection (D = 1 to 5)	Risk Priority Number (PxSxD = 1 to 125)
1	Coal swelling (decreased injectivity)	5	5	2	50
2	Coal seam permeability (decreased injectivity)	5	5	2	50
3	Reservoir permeability and injectivity	5	5	2	50
4	CO ₂ quantities, injection rate	5	5	2	50
5	Buildings	3	4	3	36
6	CO ₂ release processes	3	4	3	36
7	Topography and morphology	3	4	3	36
8	CO ₂ release to the atmosphere	3	4	3	36
9	Geographical location	3	4	3	36
10	Complex structural geology of coal seams	4	3	3	36

HSE risk

Economic risk

Pump Canyon CO₂-ECBM Site Top 10 Potential Fatal Risk Areas

R a n k	Risk Area/FEP	Failure Probability (P = 1 to 5)	Failure Severity (S = 1 to 5)	Difficulty of Failure Detection (D = 1 to 5)	Risk Priority Number (PxSxD = 1 to 125)
1	CO ₂ release processes (methane seeps)	3	4	3	36
2	Topography and morphology	3	4	3	36
3	Buildings	3	4	3	36
4	CO ₂ release to the atmosphere	3	4	3	36
5	Geographical location	3	4	3	36
6	Accidents and unplanned events	3	4	2	24
7	Excavation/drilling	3	4	2	24
8	Explosions and crashes	2	5	2	20
9	Health effects of CO ₂	2	4	2	16
10	Elevated CO ₂ in air	2	4	2	16

Pump Canyon CO₂-ECBM Site Risk Assessment Conclusions

- CO₂-ECBM is technically feasible at this site but not economically feasible at current market prices for CO₂ and natural gas.
- Coal swelling, during CO₂ injection, significantly decreases injectivity.
- The presence of natural CO₂ in the Fruitland Formation and the presence of methane in the Fruitland Formation and in all of the overlying formations will complicate MVA activities for CO₂ sequestration.
- Methane gas seeps are a more probable risk than CO₂ leakage. Methane seeps have been observed in the area since the 1880s.
- Conversion of CBM wells to CO₂ injection wells may be hindered by openhole cavity completions.
- As long as current CBM operations remain viable, it is unlikely that CO₂ sequestration would be considered in the Fruitland Formation. CBM favors low reservoir pressure and CO₂ sequestration favors high reservoir pressure. Repressurization of the Fruitland Formation via CO₂ injection may be difficult due to limited injectivity.

HCCS Accomplishments to Date

- Identified and characterized a comprehensive list of technical and programmable risks for CO₂ capture, transport and sequestration in DSA, EOR and ECBM operations.
- Developed a comprehensive Quantitative Failure Modes and Effects Analysis (QFMEA) model for CO₂ capture, transport, and sequestration in DSA, EOR and ECBM.
- Developed and employed probability calculations, process- and system-level simulation models, and shortcut calculations to quantify risks.
- Developed cost factors and financial models for CO₂ DSA, EOR and ECBM operations to quantify damage recovery costs, mitigation costs and potential cost savings.
- Completed comprehensive, quantitative risk assessments on three sites:
 - SACROC Northern Platform CO2-EOR Site in the Permian Basin.
 - Pump Canyon CO2-ECBM Site in the San Juan Basin
 - Farnsworth Unit CO2-EOR Site in the Anadarko Basin

Summary

Key Findings

- QFMEA is an effective tool for quantitative risk assessment and generates the necessary thought process for risk management during design, construction, operation and closure.
- The CO₂-EOR operations are technically and commercially feasible at current market prices. The breakeven oil price is approximately \$40/bbl.
- The CO₂-ECBM operation is technically feasible, but not commercially feasible at current market prices. The CO₂ cost would need to be close to free or the natural gas price would need to double to be commercially sustainable.

Lessons Learned

- Most CO₂ sequestration risks can be avoided by proper site selection.
- Compliance with regulations, codes, permits and best practices is critical.

Future plans

- Complete final project report.

APPENDIX

Project Schedule

Bibliography

- Lepinski, J.A., 2010, Risk assessment and management tools for CO₂ geologic sequestration. Energy and Environmental Conference (EUEC), Phoenix, AZ, February 1, 2010.
- Lepinski, J.A., 2010, Comprehensive and quantitative risk assessment of CO₂ geologic sequestration.
 DOE/EPA Collaborative Review Meeting, Pittsburgh, PA, March 23, 2010.
- Wriedt, J.; Deo, M.; Lee, S-Y; Han, W.S.; McPherson, B.; and Lepinski, J.A., 2011, A methodology for quantifying risk and likelihood of failure for carbon dioxide injection into saline aquifers. Tenth Annual Conference on Carbon Capture & Sequestration, Pittsburgh, PA, May 2-5, 2011.
- Keating, G. N., Viswanathan, H. S., Letellier, B. C., Han, W. S., Wriedt, J., Lee, S-Y, Deo, M., and Lepinski, J. A., 2011, CO₂ leakage risk: assigning metrics. Tenth Annual Conference on Carbon Capture & Sequestration. Pittsburgh, PA, May 2-5, 2011.
- Lepinski, J.A., 2012, Comprehensive and quantitative risk assessment of CO₂ geologic sequestration DE-FE0001112 annual review. NETL WebEx, February 15, 2012.
- Viswanathan, H., Keating, G., Letellier, B., Keating, E., Dai, Z., Pawar, R., Lopano, C., Hakala, J.,
 2012, Uncertainty quantification of shallow groundwater impacts due to CO₂ sequestration. SIAM
 Conference on Uncertainty Quantification, Raleigh, NC, April 2-5, 2012.
- Lepinski, J.A., 2012, Comprehensive and quantitative risk assessment of CO₂ geologic sequestration DE-FE0001112, NETL Carbon Storage R&D Project Review Meeting, Pittsburgh, PA, August 21-23, 2012.
- Wriedt, J., Deo, M., Han, W.S., Lepinski, J.A., 2013, Application of best practices carbon dioxide injection for the northern platform of the SACROC unit in the Permian Basin, technical poster presented at the Permian Basin CCUS Center Interactive Two-Day Forum, Odessa, TX, March 25-26, 2013.