Development and deployment of a compact eye-safe scanning differential absorption lidar (DIAL) for spatial mapping of carbon dioxide for monitoring/verification/accounting at geologic sequestration sites

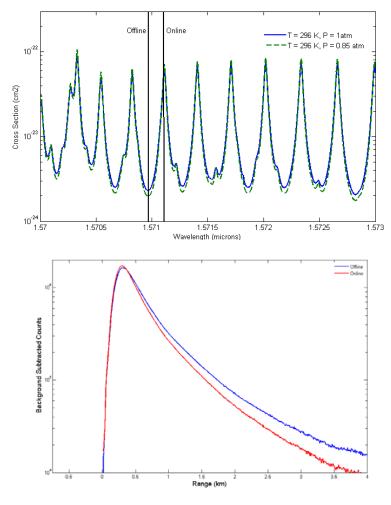
Project Number: DE-FE0001156

Kevin S. Repasky, John L. Carlsten, William Johnson, Benjamin Soukup, and Amanda Bares Electrical and Computer Engineering, Cobleigh Halll Room 610, Montana State University, Bozeman, MT, 59717

> U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO₂ Storage August 20-22, 2013

- Program and Project Benefits
- Technical Status
 - Brief Introduction to differential absorption lidar (DIAL)
 - DIAL instrument description
 - Experimental results
- Program accomplishments and summary

- Program Goals Addressed:
 - Develop and validate technologies to ensure 99% storage permanence.
- Project Benefits

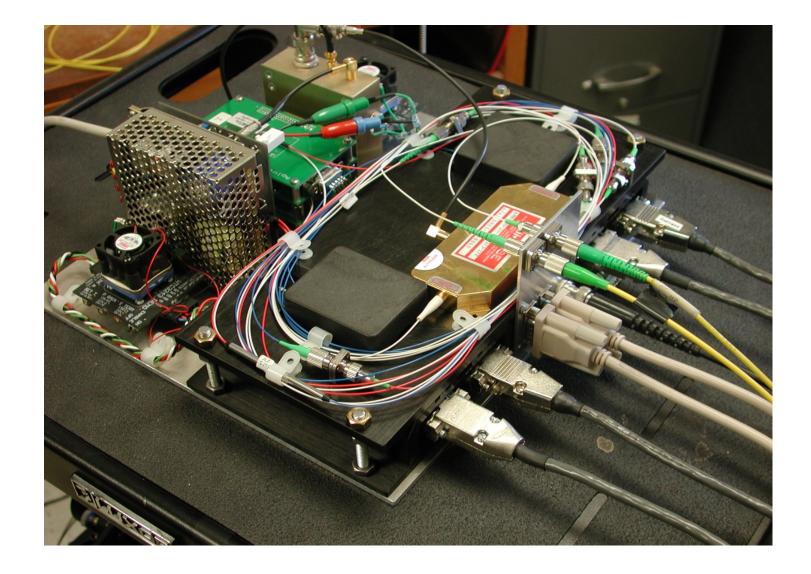

The research project is developing a scanning differential absorption lidar for spatial mapping of CO_2 number densities for near surface large area monitoring. This technology contributes to the Carbon Storage Program's effort to ensure 99% CO_2 storage permanence.

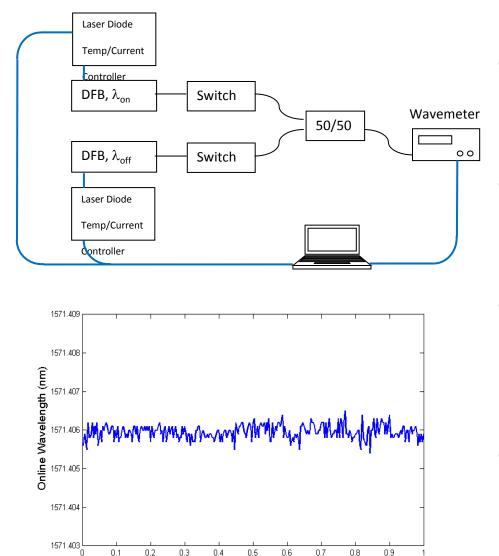
- The project objectives for the proposed work include the development, testing, and deployment of a scanning eye-safe diode laser based differential absorption lidar (DIAL) for near surface mapping of carbon dioxide (CO₂) number densities.
 - Relates to the development of technologies to demonstrate that 99% on CO₂ remains in the injected zones.
 - Success criteria: Demonstration of instrument from a laboratory setting.
- Horizontal testing of the instrument will be conducted to determine the performance of the CO₂ DIAL instrument at the Zero Emission Research Technology (ZERT) field site during a controlled release experiment.
 - Relates to conducting field tests for site operations.
 - Success criteria: Demonstration of instrument during a ZERT controlled release experiment. Validation with in-situ Licor detector.
- Testing at the Big Sky Carbon Sequestration Partnership to deploy the CO₂ DIAL instrument at a regional carbon sequestration demonstration project.
 - Relates to conducting field tests for site operations.
 - Success criteria: Deployment at the Big Sky Carbon Sequestration Partnership Site in north-central Montana for one month.

- The DIAL technique uses two closely spaced wavelengths and does not rely on an instrument calibration.
- The difference between the return signal for the two closely spaced wavelengths is related to the molecular number density.
- The number density can be calculated using the DIAL equation.

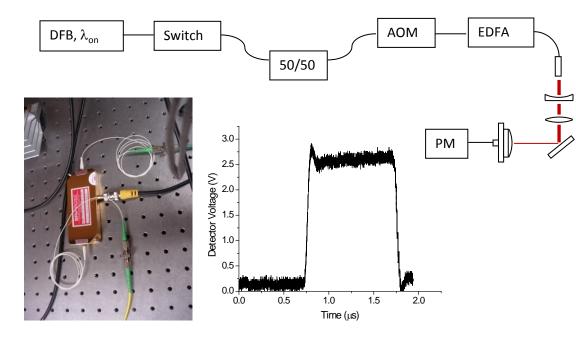
$$N(r) = \frac{1}{2\Delta r(\sigma(\lambda_{on'}r) - \sigma(\lambda_{off'}r))} \left[ln \left(\frac{P(\lambda_{on'}r)P(\lambda_{off'}r + \Delta r)}{P(\lambda_{on'}r + \Delta r)P(\lambda_{off'}r)} \right) \right]$$

Technical Status: Instrument Schematic

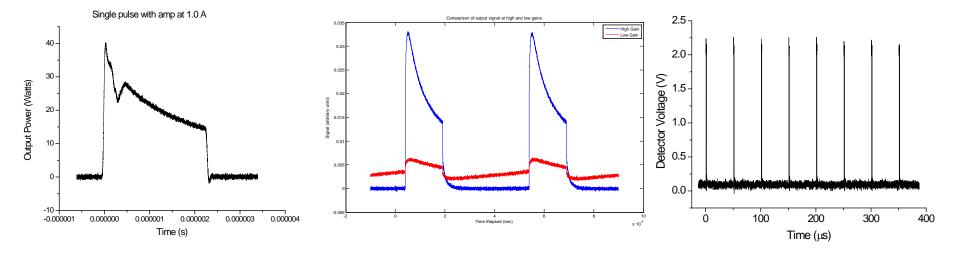



DFB, λ_{on} Switch 50/50 DFB, λ_{off} Switch	AOM EDFA
MCS TTL PMT	

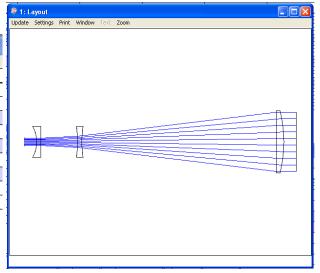
DFB	Lasers						
Manufacturer	Eblana						
Packaging	14 pin						
Output Power	10 mW						
Linewidth	<2 MHz						
Side Mode Suppression	>40 dB						
El	DFA						
Manufacturer	IPG Photonics EAR-0.5K-1573-MT						
Max. Output Power	0.5 W						
Power Stability	0.54%						
Wavelength Range	1.570 – 1.575 μm						
РМТ							
Manufacturer	Hamamatsu H10330-075A						
Wavelength	0.95 – 1.70 μm						
Gain (@-800 V)	1X10 ⁶						
Dark Current	300 nA						
Quantum Efficiency	2%						
Operating Temp.	TEC Cooled to -60 C						

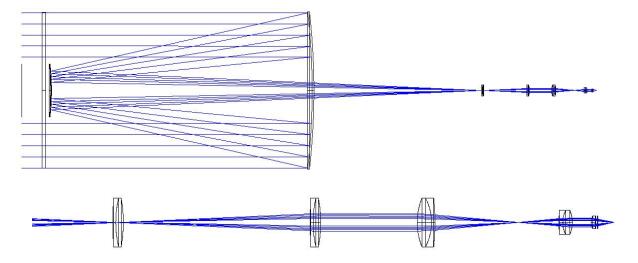


Time Elapsed (hours)


- A two laser scheme was developed so that switching times between on-line and off-line can be on the order of seconds.
- This locking scheme always ensures seed power to the EDFA to prevent damage due to stimulated Brillioun scattering.
- This locking is robust, operating unattended over a period of 12 hours with this instrument and up to seven days on a water vapor DIAL.
- Locking stability is +/- 0.18 pm (+/-20 MHz)

Technical Status: Pulse Generation


- Pulses between 0.2 and 2 μs generated using the AOM.
- Pulse repetition frequency of up to 25 kHz demonstrated.
- A pulse repetition frequency of 15 kHz provides a maximum range of 10 km.



Technical Status: Optical Modeling

							_		_					
	🖗 Lens Data Editor													
Edit Solves View Help Surf:Type Comment Radius Thickness Glass Semi-Diameter									Conic					
OBJ	Standard		Infinity	Infinity				0.000		0.000				
STO	Standard	input beam	Infinity	10.000				2.900		0.000				
2*	Standard	expander	-25.700	3.500		N-BK7		12.500	U	0.000				
3*	Standard		Infinity	30.020	v			12.500	U	0.000				
4*	Standard		-77.900	3.500		N-BK7		12.500	U	0.000				
5*	Standard		77.900	159.298	v			12.500	U	0.000				
6*	Standard	collimator	Infinity	6.200		N-BK7		25.400	U	0.000				
7*	Standard		-103.360	10.000				25.400	U	0.000				
IMA	Standard		Infinity	-				24.334		0.000				

Collimation of the outgoing beam is key to achieving accurate on-line and off-line returns. Measuring the M² and beam diameter of the outgoing beam, a collimation optical train was designed.

The receiver optical train images the telescope focus at the fiber input which acts as the receiver field stop.

Range, overlap, and signal to noise performance depends on a well executed receiver design.

Technical Status: Labview Control Program

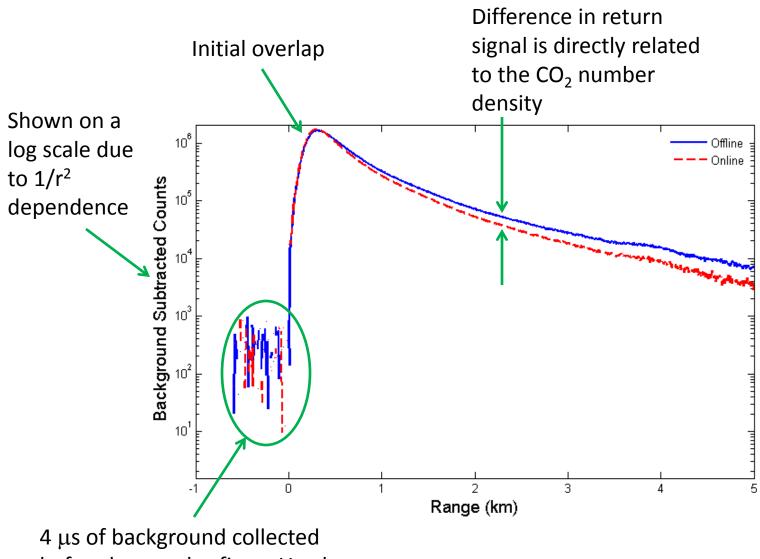
수 & 🌒 🛚	15pt Dialog Font	<u>, 197 ∰</u> .		2
	Wavemeter EDFA DFB AZM Start Angle 90 ALT Start Angle 90 AZM Step Size 10 ALT Start Size 10 Slew Speed 9	B's Scanning Serial Com AMCS SW/ Final AZM Angle 110 Final ALT Angle 110 ALT current angle 0 AZM current angle 0 Celestron Base COM Port	PM Scanning Minutes per scan Angle 15 Out Power -1.22054E	Online Returns 9- 8- 7- 6- 6- 9- 9- 8- 7- 6- 1- 0- 1- 0 13 Time Elapsed (hours) Offline Returns 9- 8-
	Tab Control			7- 6- 0 -
	Online File Path			
		CO2 DIAL\Raw data\2011\12_2011\12_20_2011_1_	Online.dat	€ 5- • 54- • 64- • 64- • 64- • 73- •
	Offline File Path	CO2 DIAL\Raw data\2011\12_2011\12_20_2011_1_	Offline dat	2 3-
	Data to write C	Maximum Wavemeter Count Out of Exceeded Range	on nerduc	2- 1- 0- -1- -1 12
				Time Elapsed (hours)

Technical Status: CO₂ DIAL -- Scanning

Using existing telescope mount with motor drives provides a stable scanning method.

DIAL instrument, supporting electronics, and data acquisition computer in the cargo trailer at the ZERT site.

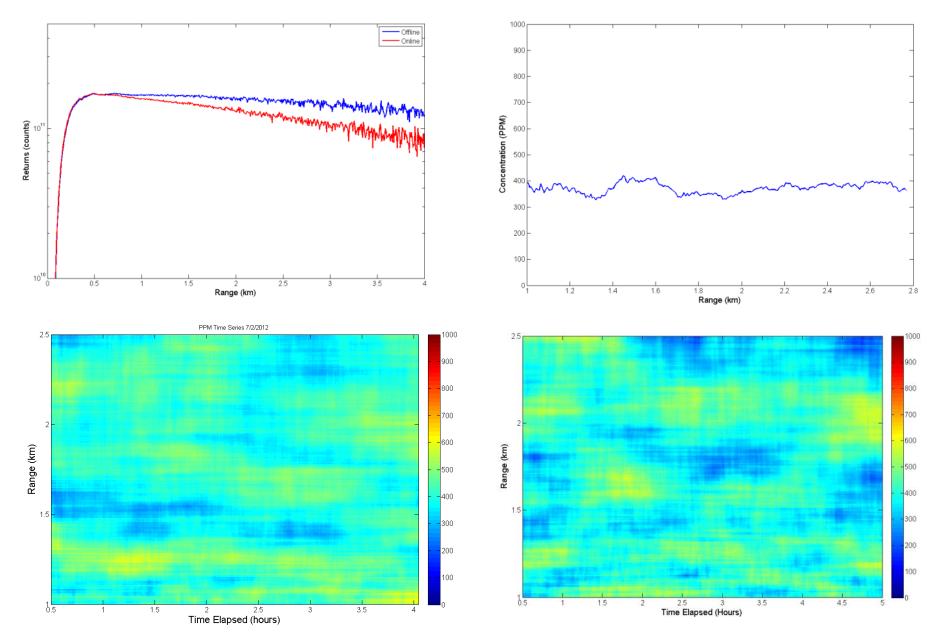
American National Standard for Safe Use of Lasers ANSI Z136.1-1993


Wavelength: 1.571 μm Pulse Repetition Frequency: 15 kHz Pulse Duration: 200 ns

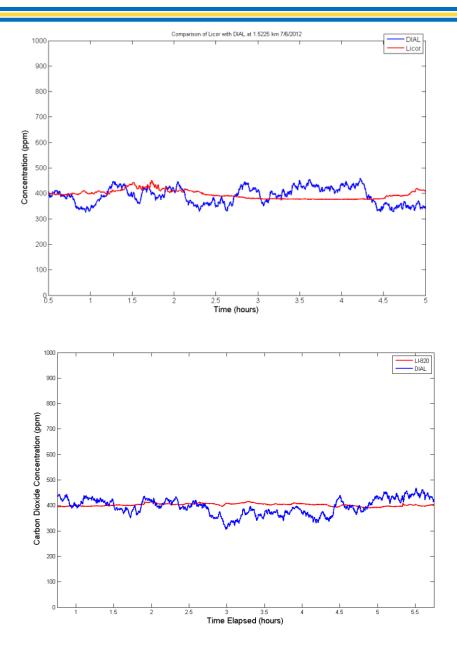
The Maximum Permissible Exposure (MPE) for a Non-Ocular-Eye-Hazard distance of 0 m is

$MPE = 6.67 \ \mu J/cm^2$

For the 5.0 cm diameter laser transmitter beam, the maximum pulse energy of $130 \ \mu$ J must be maintained for the Non-Ocular-Eye-Safe distance of 0 m.



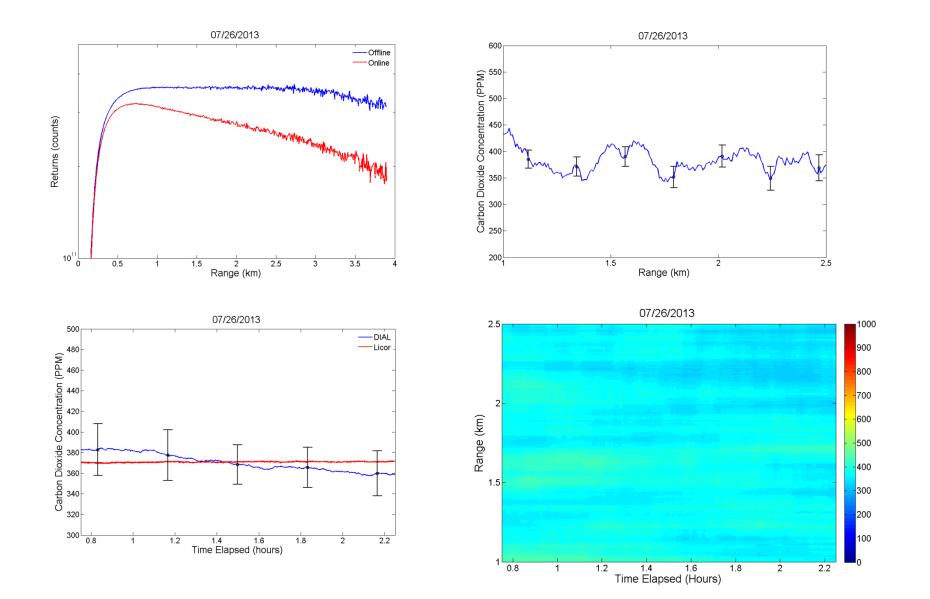
before laser pulse fires. Used for background subtraction



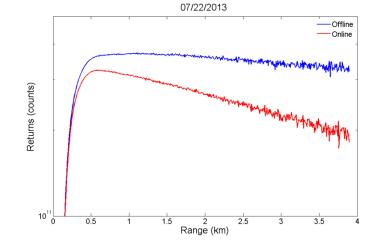
Technical Status: Data

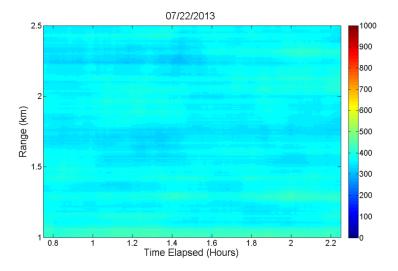
Technical Status: Data

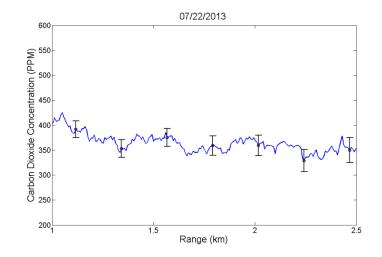
Technical Status: Big Sky Carbon Sequestration Site

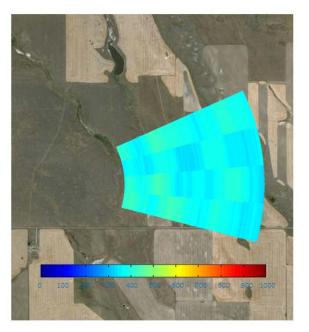


Technical Status: Big Sky Carbon Sequestration Site


盗


MONTANA STATE UNIVERSITY B O Z E M A N



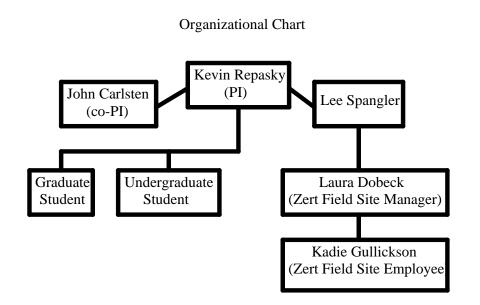


Technical Status: Big Sky Carbon Sequestration Site

- A field deployable DIAL for spatial mapping of CO₂ has been developed.
- CO₂ profiles have been demonstrated with continuous operation over 8 hours.
- CO₂ profiles have been validated using a colocated point source Licor detector.
- Instrument has been demonstrated at the ZERT field site.
- Instrument has been successfully deployed at the Big Sky Carbon Sequestration Partnership site for a one month period.

- The DIAL offers a potential large area monitoring technology for surface monitoring for carbon storage facilities.
- The DIAL has been successful deployed at the ZERT field site and data validated using in-situ point detectors.
- The DIAL has been successfully deployed at the Big Sky Carbon Sequestration Partnership site in north-central Montana.
- Future Plans
 - Incorporate and finish testing APD.
 - Collaboration with NASA on CO $_2$ detection at 1.571 μm and 2 μm (Upenrda Singh and Jirong Yu, NASA LaRC, Langley, VA). Proposal Pending.
 - Technology transfer: photon upconversion techniques for more efficient detection techniques (Advr, Bozeman, MT)

Thanks Kindly for Your Time



- Kevin Repasky: (PI) responsible for overall project.
- John Carlsten: (Co-PI) work with Dr. repasky to manage project and students.
- Lee Spangler: Hear of ZERT and BSCSP. Coordinate field work
- Laura Dobeck: Coordinate ZERT field experiments.

Phase 1 Develop DIAL	Sept 1 2009	Dec 1 2009	Mar 1 2010	Jun 1 2010	Sept 1 2010	Dec 1 2010	Mar 1 2011	Jun 1 2011	Sept 1 2011	Dec 1 2011	Mar 1 2012	Jun 1 2012	Jun 30 2012
Task 1 Develop DIAL Transmitter	-	,											
Task 2 Develop DIAL Receiver	•	,											
Task 3 Develop Two Mirror Scanner				•									
Task 4 Assemble DIAL and Develop Software				• •									
Phase 2 Test DIAL Instrument					-								
Task 1 Laboratory Testing					┥								
Task 2 Testing at ZERT Field Site							-	-					
Phase 3 Deploy DIAL at Demonstration Site													▶

Figure 5 (From Proposal) Gantt Chart showing the proposed timeline to complete each task and phase of the proposed project.

Note: Due to permitting issues, A second summer of ZERT field work is being completed in the summer of 2012 and the instrument will be deployed at the BSCSP site in the summer of 2013.

- Presentations
 - "Development of a Differential Absorption Lidar (DIAL) for Carbon Sequestration Site Monitoring", William Johnson, Amanda Bares, Amin R. Nehrir, Kevin S. Repasky, and John L. Carlsten, American Geophysical Union, San Francisco, California, 2011, (contributed).
 - "Laser based detection of atmospheric carbon dioxide", K.S. Repasky, National Institute of Standards and Technology, Gaithersburg, MD, March 2012 (invited).
 - "Large area detection of CO2 for carbon sequestration", IEAGHG: Environmental Impacts of CO2 Storage Workshop, Bozeman, MT, July 2012 (invited).
- Papers:
 - "Differential Absorption Lidar (DIAL) for Carbon Dioxide Monitoring", William Johnson, Kevin S. Repasky, and John L. Carlsten[,] Applied. Optics, Vol. 52 Issue 13, pp.2994-3003 (2013).