Simulation of Coupled Processes of Flow, Transport, and Storage of CO₂ in Saline Aquifers

DE-FE0000988

Philip H. Winterfeld Colorado School of Mines

U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO₂ Storage August 20-22, 2013

Presentation Outline

- Benefit to the Program
- Project Overview: Goals and Objectives
- Technical Status
- Accomplishments to Date
- Summary
- Appendix

Benefit to the Program

- Advanced simulation tool for quantifying transport in porous and fractured geological formations during CO₂ sequestration that includes all mechanisms: convection, diffusion, dissolution and chemical reactions
- A simulator that can fully model these processes does not currently exist
- Simulator will contribute to our ability to predict CO₂ storage capacity in geologic formations, to within ±30 percent

Project Overview: Goals and Objectives

- Comprehensive reservoir simulator for investigation of CO₂ non-isothermal, multiphase flow and long-term storage in saline aquifers
- 1) Three-phase non-isothermal module for CO₂-brine flow
- 2) Coupling fluid flow and pressure with rock deformation
- 3) Geochemical reactions between injected CO₂ and aquifer rock
- 4) Modeling of density instability at CO_2 -brine interface
- 5) Development of efficient parallel computing algorithms
- 6) Development of general fracture conceptual models
- 7) Verification and application using lab and field data

Technical Status

1) Three-phase non-isothermal module for CO₂-brine flow

- TOUGH2 fluid property module brine-CO₂ systems
- Called ECO2M, uses fluid property correlations from earlier ECO2N module
- Developed for CO₂ sequestration, highly accurate for conditions of interest (10 - 110 °C, P < 600 bar)
- Three phases: aqueous, liquid CO₂-rich, gaseous CO₂-rich; plus two- and three-phase combinations
- Wrote documentation (user's manual) for module, including test problems, tested code

ECO2M Phase Combinations

Figure 1. Possible fluid phase combinations in the system water- CO_2 , and transitions between them in the P-T range of ECO2M. The phase designations are a - aqueous, 1 - liquid CO_2 , g gaseous CO_2 . Separate liquid and gas phases of CO_2 exist only at subcritical conditions. Phase combinations are identified by a numerical index that ranges from 1 to 7.

2) Coupling fluid flow and pressure with rock deformation

- Fully coupled simulator, TOUGH2-CSM, for modeling THM effects in fractured and porous media saline aquifers
- Based on TOUGH2-MP formulation, geomechanical effects modeled using Mean Stress Equation
- Porosity and permeability depend on effective stress
- Validated using analytical solutions (Mandel-Cryer, one-dimensional consolidation) and studies from the literature

Geomechanical Formulation

 Combine Hooke's law for a thermo-multi-poroelastic medium, stress equilibrium equation and strain tensor definition to yield Mean Stress Equation

$$\frac{3(1-\nu)}{1+\nu}\nabla^2\tau_{\rm m} + \nabla\cdot\overline{F} - \frac{2(1-2\nu)}{1+\nu}\nabla^2\left[\sum_{\rm k}(\alpha_{\rm k}P_{\rm k} + 3\beta K\omega_{\rm k}T_{\rm k})\right] = 0$$

• Trace of Hooke's law: volumetric strain equation

$$K\epsilon_{v} = \tau_{m} - \sum_{k} (\alpha_{k}P_{k} + 3\beta K\omega_{k}(T_{k} - T_{ref}))$$

Rock Property Correlations

- Φ and k correlate with effective stress: $\tau' = \tau_m \alpha P$
- Rutqvist et al. (2002) $\varphi = \varphi_r + (\varphi_0 - \varphi_r)e^{-a\tau'} \qquad k = k_0 e^{c\left(\frac{\varphi}{\varphi_0} - 1\right)}$
- Verma and Pruess (1988)

$$\frac{\mathbf{k} - \mathbf{k}_{c}}{\mathbf{k}_{0} - \mathbf{k}_{c}} = \left(\frac{\boldsymbol{\varphi} - \boldsymbol{\varphi}_{c}}{\boldsymbol{\varphi}_{0} - \boldsymbol{\varphi}_{c}}\right)^{n}$$

Φ is ratio of pore to bulk volume

$$\varphi = 1 - \frac{V_{s}(K_{s}, P, \tau')}{V_{0}(1 - \epsilon_{v})}$$

Mandel-Cryer Effect

- Poroelastic material, compressive force is applied to the top and bottom, allowed to drain laterally
- Instantaneous uniform pressure increase under undrained compression
- Pressure near the edges decreases from drainage
- Load transfer to center, causing further increase in center pressure to a maximum, then a decline
- Analytical solution: Abousleiman and Cheng (1996)

Mandel-Cryer Comparison

3) Geochemical reactions between injected CO₂ and aquifer rock

- THMC simulator, fully coupled fluid and heat flow, geomechanics; fully/sequentially coupled geochemistry
- TOUGH2, TOUGHREACT formulation as starting point
- Geomechanics described by Mean Stress Equation
- Total chemical species = primary ones + secondary ones
- Number secondary = number independent reactions
- Secondary species include aqueous complexes, precipitates
- Solve transport equations for primary species only

Geochemical Reaction Formulation

• Reaction stoichiometry primary (j), secondary (i)

$$C_i = \sum_{j=1}^{N_c} v_{ij} C_j$$
 $i = 1...N_R$

- Aqueous complexes in equilibrium with primary species $c_i = K_i^{-1} \gamma_i^{-1} \prod_{j=1}^{N_c} c_j^{v_{ij}} \gamma_j^{v_{ij}}$
- Equilibrium mineral dissolution:

$$\Omega_{m} = X_{m}^{-1} \lambda_{m}^{-1} K_{m}^{-1} \prod_{j=1}^{N_{c}} c_{j}^{v_{mj}} \gamma_{j}^{mj} \qquad m = 1...N_{p} \qquad SI_{m} = \text{Log}(\Omega_{m}) = 0$$

• Kinetic mineral dissolution : $r_n = f(c_1, c_2, ..., c_{Nc}) = \pm k_n A_n |1 - \Omega_n^{\theta}|^{\eta}$ $n = 1...N_q$

1D radial THMC model

- Conceptual model 100m thick, 10,000 m radius
- Mineral composition in typical sandstone quartz and oligoclase, feldspar, chlorite, illite
- Nine minerals initially present, eight produced later
- 16 kinetic chemical reactions
- Key chemical species Mg²⁺, Na²⁺, AlO₂⁻, HCO₃⁻
- 90 kg/s CO2 injected for 10 years
- Long term storage afterwards

CO2 Sequestered in Minerals

- After 10 yrs injection gaseous CO2 around injector, 2-phase area beyond, then single phase
- Gaseous CO2 dissolves in aqueous, increasing acidity and resulting in reactions

• CO2 precipitated as ankerite and dawsonite

4) Modeling of density instability at CO2-brine interface

- 2D 100 \times 100 grid, random permeability distribution about 10 D mean
- CO2 diffuses through top of grid, fingers of dissolved CO2 form there, grow, and reach bottom
- Several cases ran with different seeds that generate permeability heterogeneity
- Permeability distribution affects finger shape, but finger lengths are similar

Single Case, Varying Time

Constant Time, Various Cases

-1.0

0.0

0.2

0.4

x (m)

0.6

t = 2.0e6 s

seed = 0.9

1.0

0.8

3D Simulations

- 100 x 100 x 100 grid, 20 cm block length, random permeability distribution about 0.5 D mean
- CO2 diffuses through top of grid, fingers of dissolved CO2 form there, grow, and reach bottom
- •Two cases ran with different seeds that generate permeability heterogeneity
- Early time fingers are uniform and cylindrical; later time ones are larger and flatter

3D Instability Simulation

5) Development of efficient parallel computing algorithms

- TOUGH2-CSM written to to handle larger simulations (O[10⁷-10⁸] grid blocks) efficiently
- Cluster computer: 16 nodes, 16 processors/node (Intel ® 5260 2.4 GHz), 24 GB memory/node
- emgcluster upgrade: 16 additional nodes, 24 processors/node (Intel ® E5-2620 2.0 GHz), 32 GB memory/node; InfiniBand replaced Ethernet for inter-processor connections
- Upgraded cluster specifications: 32 nodes, 640 processors, 896 GB memory

In Salah Gas Project

- CO₂ injected into depleting gas field for storage
- Rutqvist et al. (2010): TOUGH2-FLAC simulation
- 10x10x4 km domain, 4 geological layers: Shallow Overburden, Caprock, Injection Zone, and Base
- 1.5 km horizontal injection well in center of Injection Zone, 13.6 kg/sec injected for three years
- TOUGH2-CSM simulation: (1/4) symmetry element (5x5x4 km),1000x1000x60 grid (60•10⁶ grid blocks)

In Salah Gas Project – Surface Uplift

6) Development of general fracture conceptual models

- Fractured media simulated using MINC (multiple interacting continuum) model
- Variables associated with primary grid block: pressure, mass fractions, and temperature for each MINC block; mean stress common to all MINC blocks

MINC partitioning of an idealized fracture system [Pruess, 1983]

1D Consolidation, Double Φ

- Apply load to top of fluid-filled double Φ column
- Load induces instantaneous deformation and pressure increase
- Fluid then drains out of column top and the pressure dissipates
- Analytical solution presented by Wilson and Aifantis (1982) with uniaxial strain and constant applied load

1D Consolidation Comparison

EARTH • ENERGY • ENVIRONMENT

TOUGH2-CSM Workshop

- June 5-6, 2013 at Colorado School of Mines
- Workshop topics were:
 - Mathematical model
 - Parallel code structure
 - Code installation, compilation and execution
 - Input and output file descriptions
 - Running sample problems
- 30 attendees graduate students, researchers and professors from academia, and some from industry

Accomplishments to Date

- Developed ECO2M fluid property module with aqueous, and gaseous and liquid CO₂ phases
- Wrote parallel, fully coupled simulator, TOUGH2-CSM, with fluid and heat flow, and geomechanical effects in fractured and porous media
- Wrote fully coupled geochemical reaction model
- Studied and simulated density-driven instability
- Staged TOUGH2-CSM workshop to transfer technology to others

Summary

- Project is on schedule and on budget as planned
- Scheduled work is mostly completed
- Final report to be issued

Appendix

Organization Chart

Colorado School of Mines

Philip Winterfeld, Research Associate Professor, Petroleum Eng. Yu-Shu Wu, Prof. and CMG Reservoir Modeling Chair, Pet. Eng. Xiaolong Yin, Assistant Professor, Petroleum Engineering Ronglei Zhang, Ph.D. Candidate, Petroleum Engineering

Lawrence Berkeley National Laboratory

Karsten Pruess, Senior Scientist, Hydrogeology (retired) Curt Oldenburg, Staff Geological Scientist and Head Geologic Carbon Sequestration Program, Hydrogeology

Gantt Chart

<u>Figure 5.1: Milestone Status Report – Thick red l</u>	ine:	Pla	mea	l pro	ogre	ss; (Cells	s wit	h da	ırk g	grey	: Ac	tual	pro	gres	S S	
Year	1	Year 1				Year 2				Year 3				Year 4			
Quarter	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	
Task 2: Three-phase CO2 module																	
Task 2.1 Implement fluid property correlations																	
Task 2.2 Develop phase change capabilities																	
Tasl 2.3 Finalize coding and documentation																	
Task 3: Rock deformation module																	
Task 3.1 Literature review																	
Task 3.2 Formulation and coding																	
Task 3.2 Program and initial verification																	
Task 3.3 Implementation and verification																	
Task 3.4 Integration and application																	
Task 4: Identification and modeling of important geochemical reactions																	
Task 4.1 Survey of important reactions																	
Task 4.2 Study of kinetics in a fracture																	
Task 4.3 Investigation of <u>rxn</u> in non aq. phase																	
Task 4.4 Reaction module development																	
Task 5: Characterization and modeling of dissolution-driven instability																	
Task 5.1 Survey and analysis of existing data																	
Task 5.2 Theoretical and numerical studies																	
Task 5.3 Modeling of instability and integration	1																

Gantt Chart, Cont'd

Year	Year 1				Year 2				Year 3				Year 4			
Quarter	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
Task 6: Parallel computing scheme																
Task 6.1 Literature review																
Task 6.2 Grid partitioning																
Task 6.3 Grid block reordering																
Task 6.4 Jacobian matrix calculations																
Task 6.5 Parallel linear system solver																
Task 6.6 Implementation																
Task 6.7 Software test																
Task 6.8 Software release																
Task 7: Fracture models																
Task 7.1 Literature review																
Task 7.1 Conceptual model development																
Task 7.2 Formulation and coding																
Task 7.2 Programming and testing																
Task 7.3 Verification and improvement																
Task 7.4 Integration and application																
Task 8: Verification and Application																
Task 8.1 Against other simulators					8			2				2	s			
Task 8.2 Against lab data																
Task 8.3 Against field data																

Publications

- Winterfeld, P. H., Wu, Y.-S., 2011, SPE 141514 Parallel Simulation of CO2 Sequestration with Rock Deformation in Saline Aquifers, 2011 SPE Reservoir Simulation Symposium held 21-23 February, 2011, in The Woodlands, TX.
- Winterfeld, P. H., Wu, Y.-S., 2011, Numerical Simulation of CO2 Sequestration in Saline Aquifers with Geomechanical Effects, 10th Annual Conference on Carbon Capture and Sequestration, May 2-5, 2011, in Pittsburgh, PA.
- Winterfeld, P. H., Wu, Y.-S., Pruess, K., Oldenburg, C., 2012, Development of Advanced Thermal-Hydrological-Mechanical Model for CO2 Storage in Porous and Fractured Saline Aquifers, TOUGH Symposium 2012.
- Zhang, R., Yin, X., Winterfeld, P. H., Wu, Y.-S.: A Fully Coupled Model of NonIsothermal Multiphase Flow, Geomechanics, and Chemistry During CO2 Sequestration in Brine Aquifers, TOUGH Symposium 2012.
- Zhang, R., Yin, X., Wu, Y.-S., Winterfeld, P. H., 2012, A Fully Coupled Model of Nonisothermal Multiphase Flow, Solute Transport and Reactive Chemistry in Porous Media, SPE Annual Technical Conference and Exhibition held in San Antonio, Texas, USA, 8-10 October 2012.

Publications, continued

- Winterfeld, P. H., Wu, Y.-S., 2012, A Novel Fully Coupled Geomechanical Model for CO2 Sequestration in Fractured and Porous Brine Aquifers, XIX International Conference on Computational Methods in Water Resources (CMWR 2012).
- Winterfeld, P. H., Wu, Y.-S.: Chapter 8: Simulation of CO2 Sequestration in Brine Aquifers with Geomechanical Coupling. Edited by Professor Jochen Bundschuh, Head of the Hydrogeology Unit at the University of Southern Queensland, Australia/Royal Institute of Technology, Sweden, and Rafid Al-Khoury, Senior Scientist at Delft University of Technology, in Computational Models for CO2 Sequestration and Compressed Air Energy Storage, to be published by Taylor & Francis/CRC press.
- Winterfeld, P. H., Wu, Y.-S.: Development of Advanced Thermal-Hydrological-Mechanical Model for CO2 Storage in Porous and Fractured Saline Aquifers, to be published in Computers and Geosciences

