Assessing Reservoir Depositional Environments to Develop and Quantify Improvements in CO₂ Storage Efficiency: A Reservoir Simulation Approach

Project Number: DE-FE0009612

Roland Okwen, Scott Frailey, and Hannes Leetaru Illinois State Geological Survey

> U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20–22, 2013

Acknowledgments

- The Midwest Geological Sequestration Consortium (MGSC) is funded by the U.S. Department of Energy through the National Energy Technology Laboratory (NETL) via the Regional Carbon Sequestration Partnership Program (contract number DE-FC26-05NT42588) and by a cost share agreement with the Illinois Department of Commerce and Economic Opportunity, Office of Coal Development through the Illinois Clean Coal Institute.
- Through a university grant program, Landmark Software was used for the reservoir and geologic modeling.

Presentation Outline

- Project benefit to CO₂ program
- Project goals and objectives
- Project approach
- Expected outcome
- Accomplishments to date
- Summary

Benefit to the Program

Carbon Storage Program Major Goals

- Support industry's ability to predict CO₂ storage capacity in geologic formations to within ±30 percent.
- Develop and validate technologies to ensure 99 percent storage permanence.
- Develop technologies to improve reservoir storage efficiency while ensuring containment effectiveness.

Benefits Statement

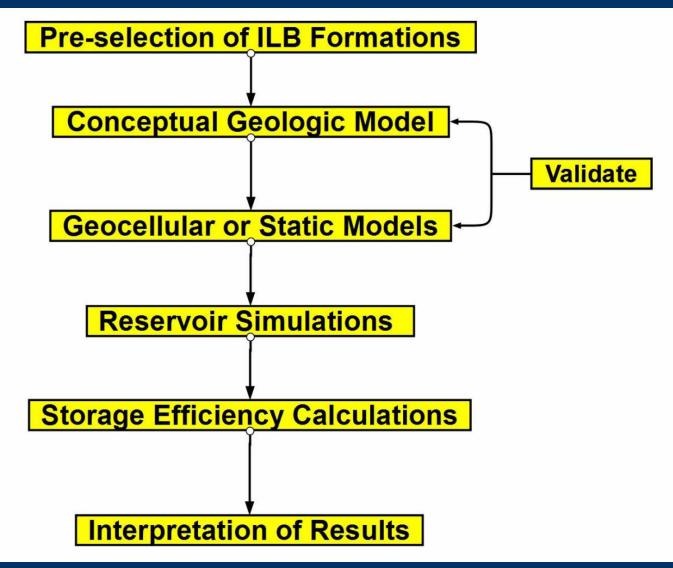
This project will address Area of Interest 3, Field Methods to Optimize Capacity and Ensure Storage Containment. The identification of field techniques to improve storage efficiency above the baseline CO_2 storage efficiency in specific geologic formation classes of different depositional environments identified by DOE as promising storage formations will provide better regional assessment estimates and site screening criteria. The research will contribute to the program's effort of estimating <u>CO₂ storage capacity in geologic formations</u>.

Project Overview: Goals

- Quantify storage efficiency (*E*) of different depositional environment (formation classes);
 - DOE's "High" and "Medium" storage potential ratings
- Identify methods that can be used to
 - Improve *E*;
 - Manage CO₂ plume

Project Overview: Objectives

- Select study areas that represent different depositional systems
- Develop rigorous geologic and geostatistical models
 of selected formations
- Conduct numerical simulations to
 - Estimate baseline E
 - Depict CO₂ plume distribution within formation flow units
 - Determine injection well orientation and completion for improving *E*


Background

- CO₂ storage potential Matrix (NETL, 2010)
- Large Scale, Small Scale and Characterization are DOE defined groups

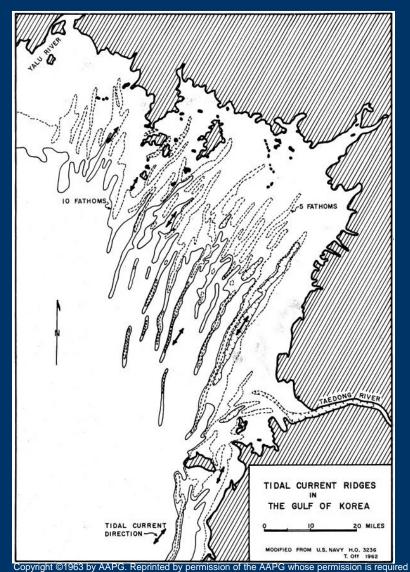
Geologic Formation Classes	High Potential				Medium Potential				Low or Unknown Potential		
	Deltaic	Shelf Clastic	Shelf Carbonate	Strandplain	Reef	Fluvial Deltaic	Eolian	Fluvial & Alluvial	Turbidite	Coal	Basalt (LIP)
Large Scale	-	1	-	-	1	3	_	1	-	-	-
Small Scale	3	2	4	1	2	-	_	2	-	5	1
Characterization	1	—	8	6	-	3	3	2	2	-	1

Matrix of Field Activities in Different Formation Classes

Approach

Pre-selection of Depositional Environments

- Take inventory of
 - All existing ILB geologic studies
 - Available geologic and reservoir data
- Review existing
 - Geologic and geocellular models
 - Reservoir characterization studies
- Select suitable formations

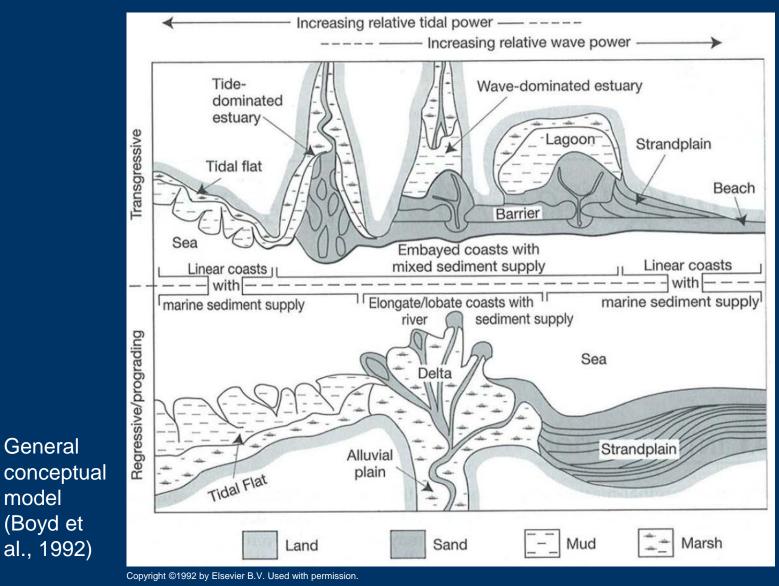

Selected Formations and Classes

Formation Class	Storage Potential (DOE's Rating)	Illinois Basin Reservoir	Formation	Lithology	
Deltaic	High	lola Consolidated	Benoist	Sandstone	
	U	Lawrence	Bridgeport	Sandstone	
Shelf Clastic	High	Lawrence	Cypress	Sandstone	
		Johnsonville Consolidated	Ste. Genevieve	Limestone	
Shelf Carbonate	High	Miletus	Geneva	Dolomite	
		Forsyth	Racine	Dolomite	
Strandplain	High	Manlove	Upper Mt. Simon	Sandstone	
Reef	High	Tilden	Racine	Dolomite	
Fluvial Deltaic	Medium	Lawrence	Bridgeport	Sandstone	
Fluvial & Alluvial	Medium	Illinois Basin Decatur project	Lower Mt. Simon	Sandstone	
Turbidite	Medium	St. James	Carper	Sandstone	

Conceptual Geologic Model

- Use available data to construct
 - Lithology
 - Correlate tops and bottoms
 - Cross sections
 - Isopach maps
 - Structure maps
- Determine depositional environment
 - Require validation by ISGS and contract geologists
- Software: Geographix

Example: Shelf Clastic

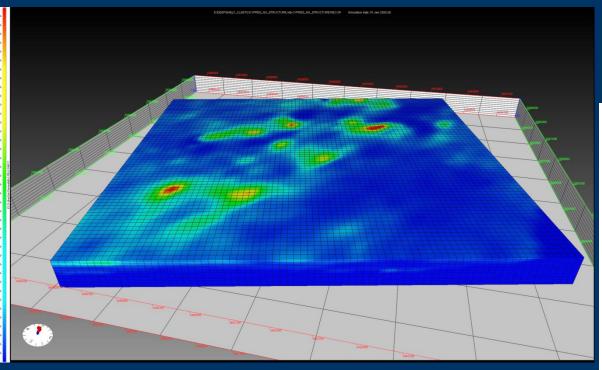


 General conceptual model (Off, 1963)

9/10/2013

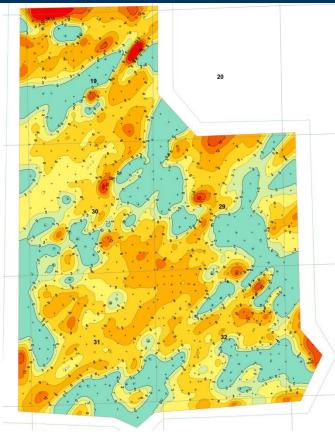
for further use. Illinois State Geological Survey

Example: Deltaic

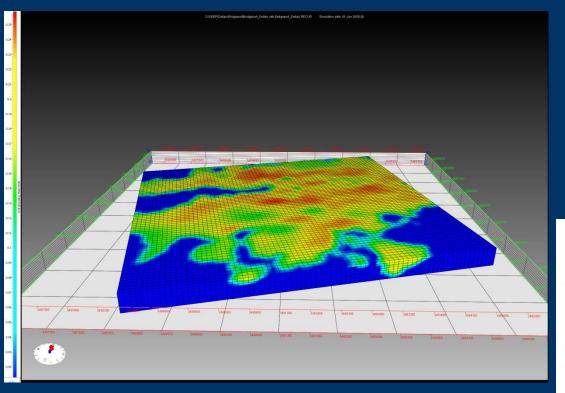

Illinois State Geological Survey www.CO2sinkefficiency.org

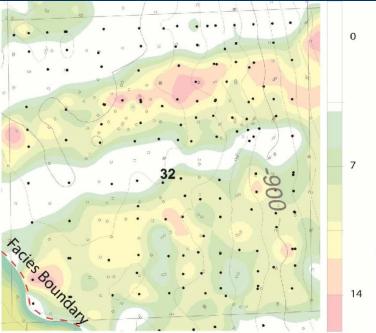
model

Geocellular Modeling


- Conduct geostatistical analyses using
 - Conceptual geologic model
 - Digitized logs
 - Core data
 - Surface maps
- Build geocellular model (4 distributions)
 - Porosity
 - Permeability
 - Thickness
 - Facies
- Flat, no structure
 - Accounts for effect of depositional environment only
- Software: Isatis

Example: Shelf Clastic



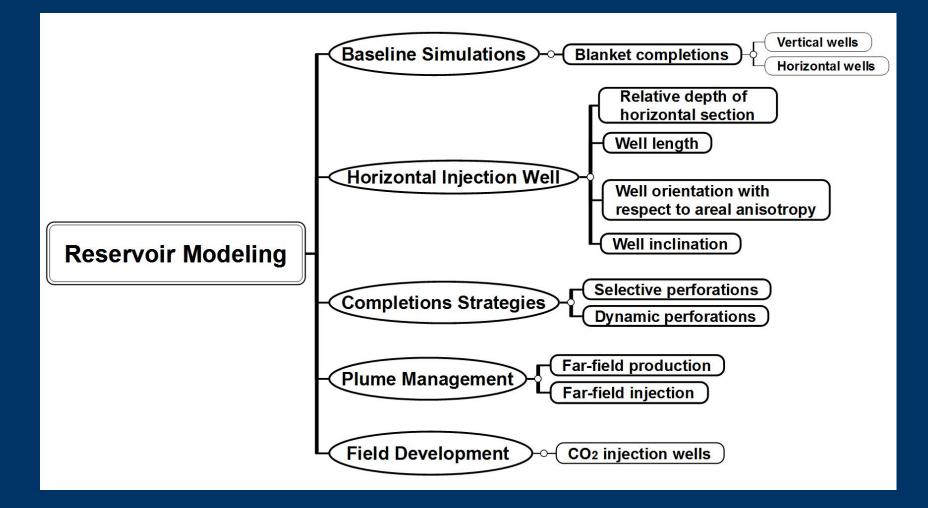

 Model area covers section 32 (bottom right) of figure (Seyler et al., 2012)

Example: Deltaic Formation

- Permeability distribution (5–300 mD)
- Model area covers isopach map (Seyler et al., 2012)

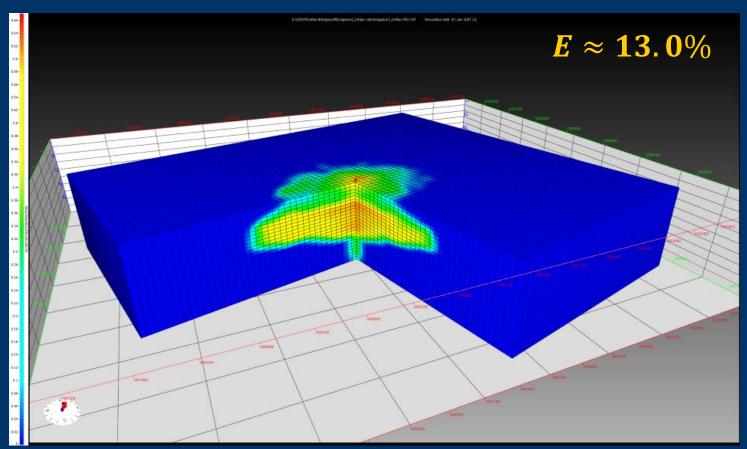
Model Validation

- Goal:
 - Obtain a geocellular model representing a depositional environment of interest
- Compare geocellular and conceptual models
 - Ensure match between both models
 - Validated by ISGS and contract geologists



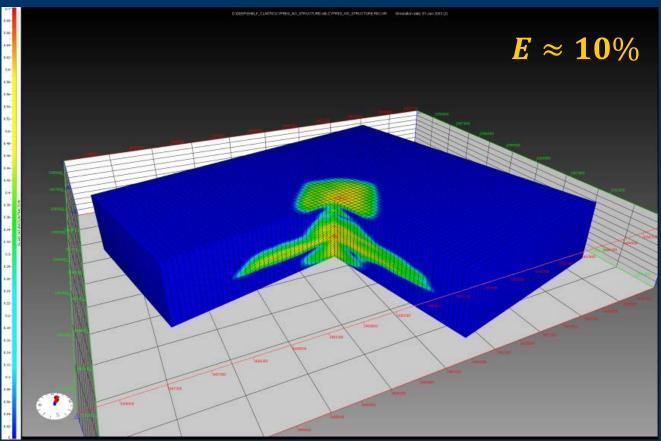
Reservoir Simulations

- Input
 - Geocellular model
 - Reservoir and PVT properties
 - End-point saturations and relative permeabilities
 - Initial conditions
 - Brine saturate formation
 - $P_{\text{init}} > P_{\text{crit,CO2}}$, $T_{\text{res}} > T_{\text{crit,CO2}}$
- Conduct numerical simulations of CO₂ injection wells
 - Vertical
 - Horizontal
- Software: Landmark Nexus


Reservoir Simulations, cont.

Example: Deltaic

- Preliminary reservoir model
- Cells: 127,500
- Vertical injection well


CO₂ plume distribution (1 year)

Example: Shelf Clastic

- Preliminary reservoir model
- Cells: 127,500
- Vertical injection well

CO₂ plume distribution (3 years)

Expected Outcome

Formation	Storage Potential	Lithology	Baseline Storage Efficiency		
Class	(DOE's Rating)		Without geologic structure		
Deltaic	High	Sandstone	? — ? %		
Shelf Clastic High		Sandstone	? — ? %		
Shelf Carbonate	High	Limestone	? — ? %		
Carbonate		Dolomite	? — ? %		
Strandplain	High	Sandstone	? — ? %		
Reef	High	Dolomite	? — ? %		
Fluvial Deltaic	Medium	Sandstone	? — ? %		
Fluvial & Alluvial	Medium	Sandstone	? — ? %		
Turbidite	Medium	Sandstone	? — ? %		

Geologic Modeling Status

Formation Class	ILB Oil or Gas Storage Field	Formation	Lithology	Conceptual Model	Geocellular Model	Reservoir Model
Deltaic	Iola Consolidated	Benoist	Sandstone	Completed	Completed	In progress
	Lawrence Field	Bridgeport	Sandstone	Completed	Completed	In progress
Shelf Clastic	Lawrence Field	Cypress	Sandstone	Completed	Completed	In progress
Shelf Carbonate	Johnsonville Ste. Genevieve Consolidated		Limestone	In progress	Pending	Pending
	Miletus Field	Geneva	Dolomite	In progress	Pending	Pending
	Forsyth Field	Racine	Dolomite	Completed	In progress	Pending
Strandplain	Manlove Field	Upper Mt. Simon	Sandstone	Completed	Completed	In progress
Reef	Tilden Field	Racine	Dolomite	In progress	Pending	Pending
Fluvial Deltaic	Lawrence Field	Bridgeport	Sandstone	Completed	Completed	In progress
Fluvial & Alluvial	Illinois Basin Decatur Project	Lower Mt. Simon	Sandstone	Completed	Completed	In progress
Turbidite	St. James Field	Carper	Sandstone	Completed	In progress	Pending

- 8 out of 11 geologic conceptual models completed
- 7 out of 11 geocellular models completed
- 6 geocellular models validated

Summary

- Key Findings
 - ILB formations studied exhibit a mixture of depositional environments with one having a dominating presence
- Lessons Learned
 - Depositional environment based storage efficiency requires
 "structure-free" models
- Future Plans
 - Compare ILB formations to similar formations in other US basins
 - Complete construction of conceptual and geocellular models
 of the remaining ILB formations
 - Complete reservoir simulation scenarios of selected ILB formations

ISGS Staff

- Reservoir Engineers:
 - Roland Okwen
 - Scott Frailey
- Sub-contractor (Schlumberger) :
 - John Grube
 - Beverly Seyler
- Database specialist
 - Damon Garner

Geologists:

- Hannes Leetaru
- Yaghoob Lasemi
- Nathan Webb
- James Damico
- Charles Monson
- Editor:
 - Dan Klen

Midwest Geological Sequestration Consortium www.sequestration.org

Appendix

- Gantt Chart
- Bibliography

Gantt Chart

	0	Task Name 🗸	Start 🖕	Finish 🖕	% Complete 🖕	Sen Oct Nov Dec Jan Feb Mar Anr	2013 May Jun Jul Aug Sen Oct Nov D	2014 Iec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec J
1	Ø	* Task 1 – Project Management, Planning, and Reporting	Mon 10/1/12	Wed 12/31/14	55%		may Jun Jun Aug Jep Oct Nov D	ec Jan Ten mai Ahrimay Jan Jan Aug Seh Occi nov Dec J
43	v Ø	Task 2 – Geologic Formation Screening	Mon 10/1/12	Thu 2/28/13	100%			
53	v Ø	Milestone: Formation List to NETL Capacity Team for Review	Thu 2/28/13	Thu 2/28/13	100%	¢_2/28		
54	√	Deliverable: Task 2 Report	Fri 8/30/13	Fri 8/30/13	100%			
55	ø	* Task 3 - Geology and Geologic Modeling	Mon 10/1/12	Tue 12/31/13	<mark>80%</mark>	V		
67		Milestone: Complete contruction og geologic models	Tue 12/31/13	Tue 12/31/13	0%			12/31
68		Deliverable: Task 3 Report	Fri 1/31/14	Fri 1/31/14	0%			♦ 1/31
69	ø	* Task 4 – Geostatistical Analyses and Geocellular Modeling	Mon 10/1/12	Wed 4/30/14	60%	V		
81		Milestone: Complete constuction of geocellular models	Wed 4/30/14	Wed 4/30/14	0%			₩ _4/30
82		Deliverable: Task 4 Report	Mon 6/30/14	Mon 6/30/14	0%			♦ 6/30
83	Ø	* Task 5 – Reservoir Flow Modeling	Mon 10/1/12	Mon 6/30/14	20%			
110		Milestone: Complete reservoir simulations	Mon 6/30/14	Mon 6/30/14	0%			6/30
111		Deliverable : Task 5 Report	Tue 7/1/14	Tue 7/1/14	0%			♦ 7/1
112	ø	* Task 6 – Interpretation and Analyses of Modeling Results	Fri 3/1/13	Tue 9/30/14	10%			
115		Milestone: Finalize estimates of storage efficiency by geologic classification	Tue 9/30/14	Tue 9/30/14	0%			9 /30

Bibliography

- 1. Boyd, R., R. Dalrymple, and B. A. Zaitlin. 1992. "Classification of clastic coastal depositional environments." *Sedimentary Geology* 80 (3–4): 139–150.
- 2. Off, T. 1963. "Rhythmic linear sand bodies caused by tidal currents." *AAPG Bulletin* 47 (2): 324–341.
- 3. Seyler, B., J. Grube, B. Huff, N. Webb, J. Damico, C. Blakley, V. Madhavan, P. Johanek, and S. Frailey. 2012. *Reservoir Characterization of Bridgeport and Cypress Sandstones in Lawrence Field Illinois to Improve Petroleum Recovery by Alkaline-Surfactant-Polymer Flood*. DOE Contract DE-NT0005664 (Issued December 21, 2012.).