Detailed CO₂ storage reservoir/site characterization: the key to optimizing performance and maximizing storage capacity

Uncertainty Reduction Progression for Determining Optimal CO₂ Storage Capacity/Dynamics/Permanence

R.C. Surdam, Z. Jiao, Y Ganshin, R. Bentley, S.A. Quillinan, J.F. McLaughlin, Shanna C. Dahl, Allory Deiss University of Wyoming Carbon Management Institute, 2020 Grand Ave. Suite 500, Laramie, WY 82070

Carbon Management Institute

Wyoming Carbon Underground Storage Project (WY-CUSP) Goals

- 1. To improve estimates of CO_2 reservoir storage capacity at the premier CCUS site in Wyoming.
- 2. To evaluate the long-term integrity and permanence of confining layers at the Rock Springs Uplift.
- To manage injection pressures and brine production in order to optimize CO₂ storage efficiency for the most significant storage reservoirs (Tensleep/Weber and Madison formations).

Carbon capture potential in southwest Wyoming

WSGS, UW, State, and DOE-funded research identified two high-capacity sites in southwest Wyoming: *Rock Springs Uplift* and *Moxa Arch*

Madison

RSU-59

Porosity (Hg) = 0.66Permeability = 0.001 mDDisplacement pressure = 1254 psiCalculated CO₂ sealing capacity* = 6900 ft.Scale bar = 200 microns

Modified stratigraphic column of the Rock Springs Uplift identifying confining layers and CO₂ target reservoirs. Modified from Love, Christiansen, and VerPloeg, 1993.

*Vavra et al., 1992

Carbon Management Institute

Madison biomicrite – 12,301.1 ft. Displacement Pressure - 4000 psi Calculated CO_2 sealing capacity > 20,000 ft

C. C. S. S. September

Carbon Management

RSU-1 well: Madison Limestone Formation lithofacies zones

Carbon Management Institute

Amsden

RSU-53

Porosity (Hg) = 3.06%Permeability = 0.003 mDDisplacement pressure = 1381 psiCalculated CO₂ sealing capacity* = 7700 ft.Scale bar = 200 microns

Modified stratigraphic column of the Rock Springs Uplift identifying confining layers and CO₂ target reservoirs. Modified from Love, Christiansen, and VerPloeg, 1993.

*Vavra et al., 1992

Carbon Management Institute

Amsden dolostone – 12,197.4 ft. Displacement Pressure - 1380 psi Calculated CO_2 sealing capacity > 7000 ft

Dinwoody

RSU-01 Porosity (Hg) = 0.64%Permeability = 0.005 mDDisplacement pressure = 940 psi Calculated CO_2 sealing capacity* = 5000 ft. Scale bar = 200 microns

RSU-18

Porosity (Hg) = 0.85%Permeability = 0.003 mDDisplacement pressure = 1521psi Calculated CO_2 sealing capacity* = 8500 ft. Scale bar = 200 microns

*Vavra et al., 1992

Dinwoody

RSU-16

Porosity (Hg) = ND Permeability = <0.001 mDDisplacement pressure = 3000 psiCalculated CO₂ sealing capacity* = 16,000 ft.Scale bar = 200 microns

Lower Jurassic reservoir Nugget Ss. Mesozoic Chugwater Fm. Triassic confining complex Dinwoody Fm. Phosphoria Park City Fm. Permian Phosphoria ²aleozoic CO₂ target reservoir Pennsylvanian Tensleep Ss. Amsden Fm. confining layer Mississippian CO₂ target reservoir Madison Ls.

Rock Springs Uplift

Modified stratigraphic column of the Rock Springs Uplift identifying confining layers and CO₂ target reservoirs. Modified from Love, Christiansen, and VerPloeg, 1993.

*Vavra et al., 1992

Carbon Management Institute

ng capacity

From Erin Campbell-Stone et al., 2010

Rock Springs Uplift hydrostratigraphic system

Carbon Management Institute

Jim Bridger 3-D seismic amplitude volume displayed in three orthogonal slices. Note an overall northeast dip of reflectors having relatively good continuity.

Carbon Management Institute

UNIVERSITY OF WYOMING

Ν

Stratal slice on top of the Madison reservoir. Seismic coherency variations are displayed in shades of gray scale.

The Rock Springs Uplift: an outstanding geological CO₂ storage site in SW Wyoming

GEOLOGIC MAP AND OIL AND GAS FIELDS OF THE ROCK SPRINGS UPLIFT AREA, SWEETWATER COUNTY, SOUTHWESTERN WYOMING

- Thick saline aquifer sequence overlain by thick sealing lithologies (8000 feet vertical separation between CO₂ storage reservoirs and fresh water aquifers)
- Doubly-plunging anticline characterized by more than 10,000 feet of closed structural relief
- Huge area (50 x 35 miles)
- Required reservoir conditions, including, but not limited to fluid chemistry, porosity (pore space), fluidflow characteristics, temperature and pressure (i.e., regional burial history)

Carbon Management Institute

W.G.A. BAXTER BASIN, MIDDLE SWEETWATER COUNTY, WYOMING DATUM - FRONTIER CONTOUR INTERVAL = 100' from WGA - Oil and Gas Fields, GGRB, 1979

WY-CUSP Deliverables

The ultimate mission of the WY-CUSP program, managed by the University of Wyoming Carbon Management Institute – delivery of a certified commercial CO_2 storage site in Wyoming that could be used as a surge tank for CO_2 utilization – is being accomplished.

Tensleep and Madison oil and gas fields in Wyoming: 2 – 4 billion barrels of stranded oil

Partners and contributors

- Thank you to the crew from Baker Hughes, Inc., including Paul Williams, Sam Zettle, Dana Dale, and Danny Dorsey
- TRUE Drilling Co. of Casper, WY provided the large rig and an excellent drilling crew.
- The WY-CUSP characterization project is funded in part by DOE NETL (Project DE-FE0009202). CMI would like to thank DOE Project Manager Karen Kluger.
- Other contributors include Los Alamos National Laboratory, Lawrence Livermore National Laboratory, PetroArc International, New England Research, Geokinetics, EMTek, and the Wyoming State Geological Survey.

Carbon Management Institute