

NATIONAL ENERGY TECHNOLOGY LABORATORY

Catalytic Transformation of CO₂ to C1 Products

Christopher Matranga, Molecular Science Division, NETL

Team Members & Collaborators: NETL: Dominic Alfonso, Xingyi Deng, Doug Kauffman, Junseok Lee, Jonathan Lekse, Congjun Wang

NETL-RUA: James Lewis (WVU), Ronchao Jin (CMU), Ken Jordan (PITT), Sittichai Natesakhawat (PI

Project Structure

- Photocatalytic Systems
 - Heterostructured Photocatalysts for CO₂ Reduction
 - Symmetry Breaking and High Throughput Computational Screening of Delafossites for the Photocatalytic Reduction of CO₂
 - Scanning Tunneling Microscopy and Dispersion-corrected Density Functional Theory Studies of TiO₂ Surfaces
- Electrocatalytic Systems
 - Electronic Structure and Catalytic Activity of Au₂₅ Clusters
- Thermal Catalytic Systems
 - Atomic Structure and Catalytic Activity of Cu/ZnO-Based Materials

Technical Barriers for CO₂ Utilization Photocatalysts

- Poor optical activity in visible & infrared
- Rapid recombination of e⁻ & h⁺ pairs prevents useful redox photochemistry
- Slow CO₂ conversion kinetics
- Difficulty controlling product selectivity

from R. Asashi et. al., Science, 293, 269 (2001)

Plasmonic Heating in Heterostructures for Catalytic CO₂ Reduction

🛧 A "Hybrid" Photo- and Thermal-Catalytic Approach 🔸

Light excites collective electron motions (Plasmons)

Optical Activity Controlled by Size/Shape/Composition

Forming Heterostructures Plasmonic Material Co₂,H₂ Co,CH₄

S. Link, M. A. El-Sayed, *J. Phys. Chem. B* **103**, 4212 (1999); A. O. Govorov, H. H. Richardson, *Nano Today* **2**, 30 (2007), G. Park, D. Seo, H. Song, *Langmuir* **28**, 9003-9009 (2012)

Light converted to Thermal energy (ohmic/joule heating)

Synthesis and Characterization of Plasmonic Au/ZnO Heterostructured Catalysts

Raman Spectroscopy to Estimate Localized Plasmonic Heating

Temp dependent ZnO phonon peaks used to monitor temperature

NĒTL

Rev. B **29**, 2051 (1984).

(#)

Photocatalysis Experiments for Activity Evaluation

Visible Light CO₂ Reduction with Plasmonic Heating

$CO_2 + H_2 \leftrightarrows Products$

(See next few slides for product distributions)

Determining Reaction Pathways

Temperature Programmed Reaction in Dark Confirm Rxn Mechanism

Demonstrating Scalability

One Simple Plasmonic Reactor Run in Two Different Modes

Project Structure

- Photocatalytic Systems
 - Heterostructured Photocatalysts for CO₂ Reduction
 - Symmetry Breaking and High Throughput Computational Screening of Delafossites for the Photocatalytic Reduction of CO₂
 - Scanning Tunneling Microscopy and Dispersion-corrected Density Functional Theory Studies of TiO₂ Surfaces
- Electrocatalytic Systems
 - Electronic Structure and Catalytic Activity of Au₂₅ Clusters
- Thermal Catalytic Systems
 - Atomic Structure and Catalytic Activity of Cu/ZnO-Based Materials

Technical Barriers for CO₂ Electrocatalysis

Technical Issues

- Large overpotentials required
- Low Efficiency
- Poor product selectivity
- Parasitic H₂ evolution

Possible Electrode Processes

J. Electroanal. Chem. 2006, 594, 1

Challenge

Identify a high efficiency catalyst with low overpotential and good product selectivity

Reaction Coordinate

Atomically Precise Au_n clusters (n < ~200)

Spans sizes between molecules & "traditional" nanomaterials

Unique quantized electronic structure

High fraction of surface atoms for catalysis

* From R. Jin, Nanoscale, 2010, 2, 343-362

Au₂₅ (SR)₁₈ Crystal Structure

Au₂₅ carries a ground state *negative* charge

TOA counterion balances charge in crystal structure

Zhu et, al. J. Am. Chem. Soc. 2008, 130, 5883-5885.

Reversible Optical Bleaching in Presence of CO₂

Kauffman, et, al. J. Am. Chem. Soc. 2012, 134, 10237-10243.

CO₂ Physisorption Reversibly Perturbs Electronic Structure

Optical Bleaching Results from Reversible Charge Redistribution

Kauffman, etl, al. J. Am. Chem. Soc. 2008, 130, 5883-5885.

Comparison to other Au Materials

Kauffman, etl, al. J. Am. Chem. Soc. 2008, 130, 5883-5885.

(#)

Demonstrating Scalability

Continuous Flow Electrochemical Reactor

Proof-of-Concept in Small H-Cell

Scaled-Up Flowing H-Cell Reactor

Au₂₅/CB on GC Electrode

Summary

- Visible light plasmonic heating can be used to convert CO₂ into CH₄, CO, and other products
- Catalytic mechanism is "photothermal"
- Au₂₅ exhibits spontaneous electronic coupling to CO₂
- Au₂₅ shows unprecendented catalytic efficiency towards CO₂ conversion

Charge Redistribution Impacts Electron Transfer to CO₂

Small but *statistically significant* anoidic shift to + oxidizing potentials Consistent with e⁻ depletion of HOMO donating levels

Kauffman, etl, al. J. Am. Chem. Soc. 2008, 130, 5883-5885.

General Catalytic Approaches For CO₂ Conversion

Investigating "Quantum Alloys" with Computational & Experimental Screening

Computational

•Au₂₂Ag₃ predicted to be stable & confirmed experimentally

Experimental

