

High Efficiency Solar-based Catalytic Structure for CO₂ Reforming

DOE NETL# DE-FE0004224

By: Dr. Hisham Menkara

Principal Investigator PhosphorTech Corporation Kennesaw, Georgia

U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for Carbon Capture and Storage August 20-22, 2013

- Benefits to the Program
- Project Goals and Objectives
- Technical Status
	- Conventional vs hybrid heterojunction systems
	- Solution-based synthesis of photocatalyst materials & structures
	- Glancing Angle Deposition (GLAD) of metal oxides by IAD
	- Chemical products selectivity and detection
	- $-$ CO₂ reforming results and concept feasibility using biomass
- Accomplishments to Date
- **Summary**
- Appendix

Benefits to the Program

Benefit Statement: Critical challenges identified in the utilization focus area include the cost-effective use of $CO₂$ as a feedstock for chemical synthesis or its integration into pre-existing products. The efficiency of these utilization processes represents a critical challenge. This research is developing a set of materials and systems useful in converting $CO₂$ into other useful chemicals using sunlight as energy.

Program Goals

- The goal of this project is to develop and demonstrate a novel photocatalytic structure and solar-based reactor having high $CO₂$ reforming potential, and high utilization of solar solar energy.
	- **Phase I**: Development & optimization of low-cost solution-based coating processes
		- Objectives: to develop solution-based thin-film coating processes for controlled and uniform coating of $TiO₂$ and NBG semiconductors on various substrates. Optical and physical properties will be measured and optimized.
	- **Phase II:** Development, fabrication, & characterization of p-n structures for $\overline{{\rm CO}_2}$ reduction
		- Objectives: to develop and fabricate p-n structures using optimized thin-films and demonstrate $CO₂$ reforming potential into fuels and chemicals
	- **Phase III:** Refinement of CO₂ reactor and prototype demonstration
		- Objectives: to build a CO_2 reactor prototype and refine p-n structure for maximum yield and energy conversion efficiency

Photocatalyst Technology Challenge

PhosphorTech Corporation – 3645 Kennesaw North Industrial Pkwy, Kennesaw, Ga 30144

Conventional vs Hybrid Photocatalysts

solar energy

 $CO₂ + 4H⁺ + 4e⁻ \rightarrow CH₂O + H₂O$

PhosphorTech Corporation – 3645 Kennesaw North Industrial Pkwy, Kennesaw, Ga 30144

Photocatalytic Reactor Designs – Commercialization Perspective

PhosphorTech Corporation – 3645 Kennesaw North Industrial Pkwy, Kennesaw, Ga 30144

Product(s) Detection by FTIR (Gas Phase)

Fourier Transform Infrared Spectroscopy (FTIR)

Continuous flow closed system $CO₂$ reforming reactor coupled to FTIR gas cell for real-time analysis

$CO₂$ **Reforming using TiO₂/C Photocatalyst Structure & UV Light**

CO2 to CH4 Conversion by TiO2/Cu Structure

 $CO₂$ concentration decreases, while methane increases

 Reforming yield slows over time due to Cu oxidation and formation of graphitic carbon

Time evolution data measured by FTIR of gas composition inside a $TiO₂/copper photocatalytic reactor system under UVA radiation$

- $-6W$ UVA bulb (340-400 nm) with intensity of $\sim 8 \text{ mW/cm}^2$
- Atmospheric pressure & room temperature)

Fuel Product(s) Selectivity through Multilayer Structures

o **Formaldehyde**

Nano-Structures Grown by Solution Processing

(a) TiO₂ nanorods on Ti substrates by anodization

2011/12/16 14:14

D8.1

 $x1.0k$

TM-1000 0112

Wavenumbers (cm-1)

FTIR spectrum of gas composition in photocatalytic reactor with $TiO₂$ nanorod on Ti substrate after UVA radiation of 168 hours (7 days) at 8 mW/cm^2

TiO2 Nano-Structures by Glancing Angle Deposition (GLAD)

Various TiO₂ nanoporous films grown with glancing angle $\alpha = 95^\circ$

Ion-assisted Deposition (IAD) of Thin-film Nanostructures

Thin-film processing at Georgia Tech:

- Process development for wide bandgap $TiO₂$ and narrow bandgap thin-films
- Multilayer deposition/optimization
- Investigation of "3D" nano-structures for improved light harvesting and catalytic properties

Glancing Angle Deposition

- GLAD is a thin film deposition technique that enables growth of porous, nano-structured films
- Thin films grown by physical vapor deposition (PVD) with ebeam evaporation system
- Substrate oriented so that flux arrives at substrate at highly oblique angles of incidence, determined by α and α_{tilt}
- Typically $\alpha \sim 70^{\circ}$ or higher
- Substrate can be rotated about axis, φ
- Use low-pressure PVD as atoms must travel in a linear trajectory and create shadow effect

Robbie & Brett, J. Vac. Sci. Technol. A 15, 1460 (1997)

PhosphorTech Corporation – 3645 Kennesaw North Industrial Pkwy, Kennesaw, Ga 30144

High Selectivity Structure for Formic Acid Production

• Formic acid is an important preservative and industrial chemical and is used in some fuel cells: - 720,000 tonnes/yr (relatively small market) - Current production involves high pressures and temperatures and the use of methyl formate, formamide, and hydrolysis processes - Ammonium sulfate byproduct, which is difficult to dispose of

• Exclusive formate formation using stable metal alloy and hybrid metal oxide semiconductors:

- High long-term stability
- IPA used as a hole scavenging agent
- Implementation near semiconductor industry?
	- \rightarrow high IPA concentration in waste water

PhosphorTech Corporation – 3645 Kennesaw North Industrial Pkwy, Kennesaw, Ga 30144

Concept Feasibility Using a Common Waste Byproduct

Example: Dairy Industry

- Production of certain dairy products such as Greek yogurt and cheese create a waste byproduct of whey acid:
	- The US Northeast alone produces about 150 million gallons of acidic whey a year
	- Whey acid is hazardous to the environment & waterways
	- Some whey acid can be mixed with livestock feed, fertilizers, and some food groups but with limited use due to high acidity
- \rightarrow *Whey acid seems to work as a good organic hole scavenger for* $CO₂$ *reforming into fuels and chemicals under sunlight*
- *Experiments were performed using unmodified whey acid solution from yogurt*

FTIR Analysis of Liquid & Gas Phase Compositions

PhosphorTech Corporation – 3645 Kennesaw North Industrial Pkwy, Kennesaw, Ga 30144

O₂ Reforming by Sunlight using Whey Acid as Sacrificial Agent

 $> 50\%$ drop in CO₂ gas concentration inside closed reactor in under 3 hours ! **Energy Efficiency ~ 0.4% (considering only formic compound)**

PhosphorTech Corporation – 3645 Kennesaw North Industrial Pkwy, Kennesaw, Ga 30144

Accomplishments to

- Completed all project milestones planned for Years 1-3 and achieved 16X higher efficiency than proposed target
- Achieved the highest reported CO₂ to CH₄ reforming yields (382 uL/h.g-catalyst) using TiO₂/Ti reactor and sunlight
- Achieved the highest reported CO₂ to CH₄ reforming yields (1823 uL/h.g-catalyst) using non-TiO₂ narrow-bandgap PN structure and sunlight
- Demonstrated a highly stable WBG-NBG $CO₂$ mini-reactor with energy efficiency under natural sunlight equivalent to 3X higher than what was reported by Nishimura in a cylindrical reactor

Date

- Nanorods and thin-films of narrow-bandgap materials synthesized with absorption up to 650nm
- Demonstrated thin-film PN structure with average VIS/NIR light absorption at 27%
- Demonstrated improved optical and thermal performance from 3-dimensional narrow bandgap nanocrystal structures
- Improved solution-based process for fabricating large bandgap nanorod structures
- Demonstrated continuous CO₂ reforming into CH₄ and CH₂O₂ using a stable TiO₂/Ti nanorod structure
- Demonstrated new metal-oxide PN structures for $CO₂$ reforming into formic acid (CH₂O₂) under sunlight conditions
- First time demonstration of fast $CO₂$ reforming into several fuels and chemicals under sunlight using environmentally toxic acid whey as a hole scavenger with 50% drop in $CO₂$ levels in under 3 hours
- Presented and published (proceedings) at the 242nd ACS conference in September 2011
- Delivered an invited presentation at the Energy Materials Nanotechnology Meeting in Orlando, FL, April 16-20, 2012
- Invited to present at Heterogeneous Catalysis Symposium, ACS Philadelphia Meeting in August 2012
- Presented at the 2013 International Conference on Carbon Dioxide Utilization (ICCDU XII), Alexandria, VA, June 23-27

- Fabricated and demonstrated various nanostructures suitable for solar-based $CO₂$ reforming in sunlight conditions
- Achieved high CO_2 to CH_4 reforming yields (1.8 ml/h.g-catalyst) using narrow-
bandgap Cu₂O oxide structure and sunlight.

 $-$ Problems with Cu₂O stability could prevent successful commercialization

- Chemical product selectivity can be achieved by choice of structure
- Demonstration of highly stable CO_2 reforming under sunlight using an un-
modified industrial biomass waste as a sacrificial agent

 \rightarrow 50% drop in CO₂ gas concentration in less than 3 hours

- Low-cost active semiconductors, abundant stable metals, and biomass waste source are key for successful commercialization of photocatalytic technology
- It is possible to use low-cost semiconductors/metals, and biomass waste source for long-term photocatalytic $CO₂$ conversion by sunlight

→ Competing with nature's photosynthetic efficiency is now within reach

 \rightarrow Energy efficiency can be increased by $> 20X$ with a photo/electrochemical hybrid

Thank You!

PhosphorTech: Y. Chen, A. Thamban, M. Nguyen, B. Schupeta, C. Summers, B. Wagner Georgia Tech: Z. Kang, J. Nadler Coal & Energy Industry Consultant: R. Minkara (VP of Technology at Headwaters)

This work was funded by the United States Department of Energy (DOE) under

DOE NETL Award: DE-FE0004224

Program Manager: William O'Dowd

Organizational Chart

PhosphorTech Corporation – 3645 Kennesaw North Industrial Pkwy, Kennesaw, Ga 30144

Gantt Chart

Bibliography

- H. Menkara, Y. Chen, A. Thamban, M. Nguyen, Z. Kang, "Nanostructured Photocatalysts for $CO₂$ Reforming into Fuels & Chemicals", ICCDU XII 2013, Alexandria, VA, June 23-27
- Y. Chen, A. Thamban, M. T. Nguyen, H. Menkara. "Highly Selective Photocatalytic Conversion of Carbon Dioxide and Water into Methane", Published in the Division of Fuel Chemistry Proceedings, 242nd ACS National Meeting, Denver, CO. Aug. 28 - Sept. 1, 2011.
- (Invited) H. Menkara, A. Thamban, M. Nguyen, Z. Kang, Y. Chen, "Solar-based CO₂ Reforming into Fuels and Chemicals using Nanostructures", 2012 Energy Materials Nanotechnology Meeting, Orlando, FL, April 16-20, 2012.
- (Invited) Y. Chen, A. Thamban, M. T. Nguyen, H. Menkara, "New Metal-
Semiconductor Nanocatalyst Systems for CO₂ Reforming by Solar Energy", Heterogeneous Catalysis Symposium, ACS Philadelphia, August 22, 2012.
- H. Menkara, C. J. Summers, Method and Apparatus for Gas Reforming, U.S. Patent Application filed Sept. 2010.