Advanced CO₂ Sequestration Studies

Project Number 58159 Task 2 Utilization and Storage of CO₂ in Unconventional Reservoirs

B. Peter McGrail Pacific Northwest National Laboratory

> U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO₂ Storage August 20-22, 2013

Presentation Outline

- Program Focus Area and DOE Connections
- Goals and Objectives
- Scope of Work
- Technical Discussion
- Accomplishments to Date
- Project Wrap-up
- Appendix (Organization Chart, Gantt Chart, and Bibliography

Benefit to the Program

- Program goals addressed:
 - Technology development to predict CO₂ storage capacity and enhanced hydrocarbon recovery in unconventional reservoirs
 - Demonstrate fate of injected CO₂ and contaminants
- Project benefits statement: Modeling and laboratory studies conducted on this project will lower cost and advance understanding of using CO₂ and mixed gas streams produced from post- and oxy-combustion power plants for enhanced hydrocarbon recovery and permanent storage in unconventional reservoirs. Findings from this project will advance understanding of preferred CO₂ storage opportunities and capacity in these unconventional geologic formations.

Project Overview: Goals and Objectives

- Goal: Develop improved understanding of geologic storage opportunities in unconventional reservoirs using CO₂ and mixed gas streams
- Objective: Utilize CO₂ to enhance hydrocarbon production and minimize environmental impacts
 - Conduct experiments to examine reaction products, and mechanisms occurring in mixed gas systems.
 - Reservoir modeling to predict fate and transport of mixed gases and to optimize system efficiency.
 - Atomistic simulations to gain mechanistic insights

Project Overview: Scope of work

• Task 1 – Pipeline and Casing Steel Corrosion Studies

- Evaluate corrosion behavior of pipeline steels in CO₂ mixtures containing trace contaminates (i.e. SO₂,O₂,H₂S)
- Evaluate impact of connate water uptake in scCO₂ with mixed gases on corrosion resistance of well construction materials
- Task 2 CO₂ Utilization and Storage

Co-sequestration through in situ reactions

- Evaluate reaction products, mechanisms, and rate of reactions in the CO₂-SO₂-O₂-H₂O system in carbonate reservoirs
- Assess critical role of water solvated in the scCO₂ phase in catalyzing reactions that strip these contaminants from the scCO₂

Enhanced methane production and sequestration in shale gas formations

- Conduct fundamental measurements of CO₂ and mixed gas interactions with key minerals and organics in shales
- Predict fate and transport to optimize hydrocarbon recovery efficiency
- Utilize atomistic simulations to gain mechanistic insight of the reactivity between scCO₂ and water with various shale minerals

Mixed-Gas Transportation and Injection

McGrail, B. P.; Schaef, H. T.; Glezakou, V. A.; Dang, L. X.; Owen, A. T., Water Reactivity in the Liquid and Supercritical CO₂ Phase: Has Half the Story Been Neglected? IGGCT, 2009; Vol. 1, pp 3415-3419.

Key Issues

- Pipeline specifications for mixed gases lack industry experience
 - CO₂-SO₂ mixtures not commercially transported
 - Adequacy of current water content specifications unknown
- Evaluate stability of wellbore casing steels exposed to mixed-gases containing water

Approach

- Conduct laboratory experiments to examine reactivity of CO₂-SO₂-O₂-H₂O mixtures on steel surfaces
- Determine role of water in reaction steps and impact of steel additives (such as Mn and Mo) on corrosion

Tracking Reaction Mechanisms Through Isotopic Labels

Experimental Approach

- Role of Water in Corrosion
 - How does water interact with metal surfaces during corrosion processes
 - Isotopic labels such as H₂¹⁸O can track dissolved water behavior
- Corrosion with X65 Pipe Steel
 - CO₂-SO₂-H₂¹⁸O
 - Gas Chemistry show rapid consumption of SO₂
 - XRD and SEM indicate significant surface corrosion
 - TGA-MS identifies ¹⁸O in reaction product, indicating no free water phase

in situ Gas Chemistry Analysis

Molecular Simulations Provide Insights on Surface Interactions

- **Molecular Scale:** H₂O on metal surface remains in molecular form
 - Binds strongly in presence of absorbed oxygen
 - Inclination to hydroxylate surface
 - Reduction in barrier energies to <9.0 kcal/mol
 - Regeneration of H₂O by H transfer to nearby OH
- DFT Calculations: SO₂ binds more strongly on Fe or Fe/Mn surface compared to CO₂
 - Mn increases binding energy
 - SO₂ prefers Mn binding sites
 - non-equilibrium effects upon rates
 - dynamic morphology changes of catalysts

Current Activity: CO₂-SO₂-O₂-H₂O experiments

In Situ Scrubbing Concept

Oxy-combustion gas streams can contain over 1% SO₂

- Likely candidate technology for new builds or retrofits
- Currently managed through SO₂ scrubbers

Chemistry behind SO₂ removal

- In wet FGD process, SO₂ becomes sulfurous acid:
- $\qquad SO_2 + H_2O \rightarrow H_2SO_3$
- Combines with limestone
- $\qquad \mathsf{CaCO}_3 + \mathsf{H}_2\mathsf{SO}_3 \to \mathsf{CaSO}_3 + \mathsf{H}_2\mathsf{O} + \mathsf{CO}_2$

To form sulfites, which can be oxidized to sulfates

In situ stripping mimics FGD process but deep underground

- More economically favorable when retrofitting existing power plants for CO₂ capture
- Produce pipeline grade CO₂ for EOR/EGR with no additional capital or operating costs for FGD

Glezakou, V. A., B. P. McGrail, and H. T. Schaef. 2012. "Molecular Interactions of SO₂ with Carbonate Minerals under Co-Sequestration Conditions: A Combined Experimental and Theoretical Study." *Geochim. Cosmochim. Ac.* **92:265-274.**

Low-water environments: Does SO₂ stripping occur?

Results

- Sulfur species permanently removed from scCO₂ phase
- Solid sulfur products
 - Surface coatings form very rapidly
 - Hannebachite (CaSO₃.0.5H₂O)

Utilization

- Carbonate reservoirs are widespread and appear well suited for accepting mixed CO₂-SO₂ gas streams
- In situ stripping could be used for gas cleanup
 - More economically favorable when retrofitting existing power plants for CO₂ capture
 - Produce pipeline grade CO₂ for EOR with no additional capital¹0r operating costs for FGD

Evaluating potential of CO₂ use in shales for enhanced gas recovery and storage

<u>Objective</u>: Identify early opportunities for utilization of CO₂ in secondary shale gas recovery

Additional gas recovery potential via CO₂-EGR

- 27 USGS assessment units, 10 basins
- 96 390 TCF at EGR:EUR ratios of 0.25 – 0.75
- Potential total value of \$350-1500 billion
- Average value of \$11-43 / tCO₂

CO₂ storage potential

- Estimated via methane mass replacement as a function of depth
- Same 27 assessment units represent a CO₂ storage resource as large as 36,000 MMT CO₂
- Marcellus shale accounts for 25% of this total

Approach

- I. Improve understanding of permanent CO₂ gas trapping mechanisms in shales
- II. Conduct reservoir simulations to improve secondary recovery
- III. Address long term impacts to U.S. CO₂ 11 storage capacity

Fundamental Gas Adsorption Studies

Quartz Crystal Microbalance

- High mass sensitivity for micro weighing in pressurized environments
- Excellent for studying mineral-fluid interfaces including adsorption and chemical processes

Gas adsorption on Kaolinite

- N₂ ~0.1-0.2 mmol/g clay
- scCO₂ adsorption reaches a max near 0.4 g/cm³ (50° C)

Computational Studies of CO₂/N₂ Adsorption on Kaolinite

- (I) CO₂ molecules adsorb almost parallel to the kaolinite surface
- (II) CO₂ aggregation in characteristic distorted T-shaped orientation (max ~0.35-0.4 g/ml)
- (III) Desorption occurs after the crossover point (~0.2 eV, green line)

Clay Expansion/Contraction

- Experiments: Exposing variable hydrated Na⁺ montmorillonite (Na-SWy-2) to anhydrous scCO₂ (90 bar and 50°C)
 - Structural changes (XRD)
 - H₂O concentrations in scCO₂ or on clay
- Dehydration processes dominate when clay is in a ~1W or 2W hydration state
 - Water partitioning from clay into scCO₂
 - scCO₂ entering /exiting interlayer
- Mineral volume changes

Application: Clay expansion due to CO₂ and water intercalation could reduce reservoir permeability and limit injectivity/recovery

Molecular Modeling: interactions of CO₂ with **Montmorillonites**

- **Objective:** Estimate relative abundance of H_2O/CO_2 intercalated in montmorillonites
 - 1W ~4-6 H_2O and 4 CO_2 per interlayer Ca²⁺ cation
 - CO₂ coordinates with the interlayer cation and organizes into layers
 - Higher CO₂ concentrations produce preferred distorted T-shaped orientation
- Enhance gas recovery implications

Findings: Calculations show bonding interactions of Mⁿ⁺/CO₂ (about 30% less than M^{n+}/H_2O)

(Montmorillonite)

2390

2340

Wavenumber / cm⁻¹

2290

2240

0.1

0 (

2440

Kaolinite: No Change.

Accomplishments to Date

Multicomponent mixed gas transportation in pipelines and wellbores

- Water content thresholds established for corrosion initiation in CO₂-SO₂ mixtures
- MD simulations illustrate reaction paths and reaction products
- High impact publications (2nd most cited paper in Energy Procedia) and new programs

CO₂ storage in unconventional reservoirs

- Demonstrated feasibility of in situ scrubbing of SO₂ from gas phase in carbonate reservoirs
- Advancing understanding of CO₂ trapping mechanisms in shales
 - In situ techniques allow separation of mechanisms (adsorption, intercalation, chemical reaction)
 - DFT simulations providing critical mechanistic understanding necessary for implementation in reservoir simulations

Summary

Key Findings

- Pipeline and wellbore construction materials are susceptible to corrosion processes in mixed gas systems containing small amounts of water
- Mixed gases can be stripped of contaminants in suitable subsurface reservoirs eliminating need for surface scrubbers when doing CO₂ capture retrofits
- FY13 Activity Summary
 - Transition initial carbon steel corrosion work into casing materials of importance for constructing co-sequestration injection wells
 - Initiate new activity in mixed gas storage and utilization in shale gas formations
 - Distinguish among trapping mechanisms through
 - Apply MD simulations to understand reaction mechanisms
 - Construct first principles based model for fate and transport of multicomponent gas mixtures in fractured shale gas reservoirs

Appendix

These slides will not be discussed during the presentation, but are mandatory

Organization Chart

- Project team has participants that cut across the Energy & Environment and Fundamental Sciences Directorates at PNNL
- Pacific Northwest National Laboratory is Operated by Battelle Memorial Institute for the Department of Energy

Gantt Chart

			Detailed Schedule																															
				FY2011											FY2012										FY2013									
				Oct	Nov	Dec	Jan	Feb	Mar Ap	il May	June	July A	Aug S	Sept	Oct	Nov [Dec	Jan Fe	b Mar	April M	ay Ju	une July	Aug	Sept	Oct	Nov	Dec	Jan	Feb	Mar	April Ma	ay June	e July	Aug Sept
	Task Name								- i	i i									i.			1	Î Î					Í					i i	
#	Project Management	Start	Finish	i					T T	i –									Ť.			1	i					- î					i –	
1	Manage Project	Jul-08	Sep-12							-				_	-													_				<u> </u>	+	
2	Compression and Transport of Mixed Gas	Jul-08	Sep-13												ĺ													ĺ	İ					
3	Streams Geologic Co- sequestration	Jul-08	Sep-13																														+	
3.1	Co sequestration through in situ reactions	Oct-10	Sep-13									i														ĺ	Ì					İ		
3.2	Co sequestration reservoir modeling	Oct-10	Sep-13									i						i				i				i	i					i	-	
3.3	Molecular dynamics modeling	Oct-10	Sep-13							÷			4		j														i				+	
3.3	Enhanced Monitoring Agents	Mar-13	Sep-13									ĺ														ĺ	j							
		Milesto								i				- i					1									1				1		
	Milestone Description		Date																															
4	Quarterly Reports			·													ľ														'			
5	Issue Journal article on SO2 interaction with Prussian Blue sorbents																													ĺ				
6	Issue journal article on structure, dynamics and vibrational spectrum of scCO2/H2O mixtures from AB initio MD as a functin of water cluster formation.																																	
7	Issue journal article on Synthesis, Characterization, and Application of Metal Organic Framework Nanostructures		Dec-10			•																												
8	Issue journal article on co- sequestration molecular modeling studies with reactive reservoir		Sep-11									ĺ		•				Ì								ĺ	İ							
9	Issue Journal article on Raman spectrum of scCO2-O18 and re- evaluation of the Fermi resonance		Mar-12							1									-	•						ĺ								
10	Complete MD simulations and issue journal article on selected pure silicate mineral reactivity in the CO2-H2O-SO2 system		Sep-12																					•	 									
11	1 Issue journal article on model clay minerals and their reactivity in wet scCO2 containing impurities		Jun-13												Ì									_								•		
12	Complete MD simulations issue journal article on sel clay minerals in the CO2-I SO2 system	and lected H2O-	Sep-13																					_								+		20
Project: Advanced co-																																		
sequest	Task																																	

Bibliography

- Glezakou, V-A., BP McGrail, HT Schaef (2012) "Molecular interactions of SO₂ with carbonate minerals under co-sequestration conditions: a combined experimental and theoretical study", *Geochimica et Cosmochimica Acta*, in press (DOI: 10.1016/j.bbr.2011.03.031).
- Windisch Jr, CF, HT Schaef, PF Martin, AT Owen, and BP McGrail (2012), "Following ¹⁸O uptake in scCO₂-H₂O mixtures with Raman spectroscopy", *Spectrochimica Acta Part A* 94 186-191.
- Windisch, C. F., V. A. Glezakou, et al. (2012). "Raman spectrum of supercritical (CO₂)-O-18 and re-evaluation of the Fermi resonance." <u>Physical Chemistry Chemical Physics</u> 14(8): 2560-2566.
- Tian, Jian, Praveen K. Thallapally and B Peter McGrail, (2012). "Porous organic molecular materials", *CrystEngComm*, 2012, 14 (6) 1909-1919.
- Liu, Jian, Praveen K. Thallapally, B. Peter McGrail, Daryl R. Brown and Jun Liu, (2012), "Progress in adsorption-based CO₂ capture by metal–organic frameworks", *Chem. Soc. Rev.*, 41, 2308-2322.
- Glezakou, V.-A., R. Rousseau, L. X. Dang, and B. P. McGrail. 2010. "Structure, Dynamics and Vibrational Spectrum of Supercritical CO₂/H₂O Mixtures from Ab Initio Molecular Dynamics as a Function of Water Cluster Formation." *Phys Chem Chem Phys* 12(31):8759-71.

Bibliography

- Thallapally, P. K., R. K. Motkuri, C. A. Fernandez, B. P. McGrail, and G. S. Behrooz.
 2010. "Prussian Blue Analogues for CO₂ and So₂ Capture and Separation Applications." *Inorg. Chem.* 49(11):4909-4915.
- Windisch CF, Jr, PK Thallapally, and BP McGrail. 2010. "Competitive Adsorption Study of CO₂ and SO₂ on Co^{II}₃[Co^{III}(CN)₆]₂ Using DRIFTS."Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy **77**(1):287–291.
- Tian J, R. K. Motkuri, and P. K. Thallapally. 2010. "Generation of 2D and 3D (PtS, Adamantanoid) Nets with a Flexible Tetrahedral Building Block." *Crystal Growth & Design* 10(9):3843-3846.
- Nune SK, PK Thallapally, and BP McGrail. 2010. "Metal Organic Gels (MOGs): A New Class of Sorbents for CO₂ Separation Applications." *Journal of Materials Chemistry* 20(36):7623-7625.
- Fernandez, CA, Nune, SK, Motkuri, RK, Thallapally, PK, Wang, CM, Liu, J, Exarhos, GJ, McGrail, BP, 2010. "Synthesis, Characterization, and Application of Metal Organic Framework Nanostructures". *Langmuir*, 26 (24), 18591-18594.
- Motkuri, RK, Thallapally, PK, McGrail, BP, Ghorishi, SB, Dehydrated Prussian blues for CO₂ storage and separation applications. *Crystengcomm* 2010, 12 (12), 4003-4006.
- Glezakou, V. A., L. X. Dang, and B. P. McGrail. 2009. "Spontaneous Activation of CO₂ and Possible Corrosion Pathways on the Low-Index Iron Surface Fe(100)." *Journal of Physical Chemistry C* 113.

Bibliography

 McGrail, B., H. Schaef, V. Glezakou, L. Dang, P. Martin, and A. Owen. 2009. "Water Reactivity in the Liquid and Supercritical CO₂ Phase: Has Half the Story Been Neglected?" In Proceedings of *GHGT-9*, Energy Procedia.(9):3691-3696.

Co-sequestration in carbonate reservoirs

- **Goal**: Designing laboratory tests to simulate subsurface conditions
- Experimental Approach:

 Results: Carbonate reservoirs are reactive and strip aqueous dissolved gaseous SO₂ from solution to precipitate solid sulfur bearing minerals

Dolomite suspended above H₂O line contained no sulfur bearing reaction 24 products

Energy profile for initial steps of sulfation reactions: Surface defects do the trick!

- Surface defects radically change the energy profile of sulfation reaction
- □ Formation of SO₃ proceeds with small barrier, ~0.5 eV
- Estimated rates
 Application to clay minerals
 ~ 10-10⁴ s⁻¹
 Pressure and viscosity effects
 - A Pressure and viscosity effects accurately removed
 - Gas adsorption measured as a ₋₀.5
 function of pressure
 - N₂ uptake ~3.1 mmol/g clay
 - CO₂ update ~7.1 mmol/g clay
 - Utilization
 - Measure adsorbed gas concentrations on shales

Steel Corrosion with Mixed Gases

Mixed Gas Chemistry

- Surface corrosion products develop after 3 hours
 - Different surface corrosion products form including an unexpected Mn sulfite phase
- Water threshold
 - Tests with less water (300 ppmw) indicate a delay in onset of visible surface corrosion
 - Increases in H₂O content produce more corrosion

Molecular Modeling: interactions of CO_2 with H_2O and Ca^{2+}

- Hydrated ion behavior in dry scCO₂
 - Segregation of hydrated Ca²⁺
 - Average Ca²⁺ and C distance >5 Å
 - Attractive interactions between anhydrous ions and CO₂ and monomeric H₂O solvated in CO₂
 - Ca-CO₂ 3.6Å

Ca²⁺ with wet scCO₂

4.0

6.0

8.0

2.0

0.0

10.0

Acoustically Responsive Contrast Agents for Enhanced Seismic Monitoring of Injected CO₂ in Geologic Formations

- MOF nanomaterials with high surface area and excellent porosity which respond through resonant absorption modes will be used to track injected CO₂ via conventional seismic imaging or by new laser Doppler vibrometry methods.
- The resonant modes are enabled through librational modes in the nanoparticles imparted through use of flexible organic building blocks used to construct their framework.
- Once a stable CO₂ nanofluid is formed, acoustic contrast property evaluation will be performed by velocity measurements under pressure using core flood experiments.

 Image: A stable CO₂ nanofluid is formed, acoustic contrast property evaluation will be performed by velocity measurements under pressure using core flood experiments.
- Flexible ligand L1 is synthesized for making flexible MOFs
- Flexible MOF Ni-L1 synthesized using hydrothermal conditions.

Rational for Examining Water Bearing CO₂

- Pipeline specifications vary and are largely related to end user application, i.e. EOR
 - Dry CO₂ and CO₂-H₂S streams are unreactive with pipeline steels
 - Knowledge gap for CO₂ streams containing intermediate water content
 - Multistage compression can be used reduce water content in CO₂ stream and potentially eliminate dehydration system
- Initially dry liquid or supercritical CO₂ quickly absorbs water
- Reaction mechanisms of solvated water, CO₂, and contaminants in CO₂ stream are poorly understood
- Well-defined concepts in aqueous solutions do not have corresponding thermodynamic meaning
- Molecular simulations provide insights into surface interactions

Mutual Solubilities

Implication to Reservoir Rocks

- Only basic experimental scoping studies on rock-CO₂-water systems available
 - Regnault et al. 2005 (200°C, 105/160 several pure mineral phases)
 - Lin, et al. 2008 (100°C, <1 week, granite)
- No experiments or modeling with mixed gas WBSFs