Advanced CO₂ Sequestration **Studies**

Project Number 58159 Task 2 Utilization and Storage of $CO₂$ in Unconventional Reservoirs

B. Peter McGrail Pacific Northwest National Laboratory

> U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for $CO₂$ Storage August 20-22, 2013

Presentation Outline

- Program Focus Area and DOE Connections
- Goals and Objectives
- Scope of Work
- Technical Discussion
- Accomplishments to Date
- Project Wrap-up
- Appendix (Organization Chart, Gantt Chart, and Bibliography

Benefit to the Program

- Program goals addressed:
	- $-$ Technology development to predict $CO₂$ storage capacity and enhanced hydrocarbon recovery in unconventional reservoirs
	- Demonstrate fate of injected $CO₂$ and contaminants
- 3 • Project benefits statement: Modeling and laboratory studies conducted on this project will lower cost and advance understanding of using $CO₂$ and mixed gas streams produced from post- and oxy-combustion power plants for enhanced hydrocarbon recovery and permanent storage in unconventional reservoirs. Findings from this project will advance understanding of preferred $CO₂$ storage opportunities and capacity in these unconventional geologic formations.

Project Overview: Goals and Objectives

- Goal: Develop improved understanding of geologic storage opportunities in unconventional reservoirs using $CO₂$ and mixed gas streams
- Objective: Utilize $CO₂$ to enhance hydrocarbon production and minimize environmental impacts
	- Conduct experiments to examine reaction products, and mechanisms occurring in mixed gas systems.
	- Reservoir modeling to predict fate and transport of mixed gases and to optimize system efficiency.
	- Atomistic simulations to gain mechanistic insights

Project Overview: Scope of work

• Task 1 – Pipeline and Casing Steel Corrosion Studies

- Evaluate corrosion behavior of pipeline steels in $CO₂$ mixtures containing trace contaminates (i.e. SO_2, O_2, H_2S)
- Evaluate impact of connate water uptake in $scCO₂$ with mixed gases on corrosion resistance of well construction materials
- Task $2 CO₂$ Utilization and Storage

Co-sequestration through in situ reactions

- Evaluate reaction products, mechanisms, and rate of reactions in the CO_2 -SO₂-O₂-H₂O system in carbonate reservoirs
- Assess critical role of water solvated in the $scCO₂$ phase in catalyzing reactions that strip these contaminants from the $scCO₂$

Enhanced methane production and sequestration in shale gas formations

- Conduct fundamental measurements of $CO₂$ and mixed gas interactions with key minerals and organics in shales
- Predict fate and transport to optimize hydrocarbon recovery efficiency
- Utilize atomistic simulations to gain mechanistic insight of the reactivity between $\sec O₂$ and water with various shale minerals

Mixed-Gas Transportation and Injection

McGrail, B. P.; Schaef, H. T.; Glezakou, V. A.; Dang, L. X.; Owen, A. T., Water Reactivity in the Liquid and Supercritical CO₂ Phase: Has Half the Story Been Neglected? IGGCT, 2009; Vol. 1, pp 3415-3419.

Key Issues

- Pipeline specifications for mixed gases lack industry experience
	- $CO₂-SO₂$ mixtures not commercially transported
	- Adequacy of current water content specifications unknown
- Evaluate stability of wellbore casing steels exposed to mixed-gases containing water

Approach

- Conduct laboratory experiments to examine reactivity of CO_2 -SO₂- O_2 -H₂O mixtures on steel surfaces
- Determine role of water in reaction steps and impact of steel additives (such as Mn and Mo) on corrosion

Tracking Reaction Mechanisms Through Isotopic Labels

Experimental Approach

- Role of Water in Corrosion
	- How does water interact with metal surfaces during corrosion processes
	- Isotopic labels such as $H_2^{18}O$ can track dissolved water behavior
- Corrosion with X65 Pipe Steel
	- $\mathsf{CO}_2\text{-}\mathsf{SO}_2\text{-}\mathsf{H}_2{}^{18}\mathsf{O}$
	- Gas Chemistry show rapid consumption of $SO₂$
	- XRD and SEM indicate significant surface corrosion
	- TGA-MS identifies 18O in reaction product, indicating no free water phase *in situ* Gas Chemistry Analysis

Molecular Simulations Provide Insights on Surface **Interactions**

- **Molecular Scale:** H₂O on metal surface remains in molecular form
	- Binds strongly in presence of absorbed oxygen
	- Inclination to hydroxylate surface
	- Reduction in barrier energies to <9.0 kcal/mol
	- Regeneration of H_2O by H transfer to nearby OH
- **DFT Calculations: SO₂ binds more** strongly on Fe or Fe/Mn surface compared to $CO₂$
	- Mn increases binding energy
	- $-$ SO₂ prefers Mn binding sites
	- non-equilibrium effects upon rates
	- dynamic morphology changes of catalysts

Current Activity: CO₂-SO₂-O₂-H₂O experiments

8

In Situ Scrubbing Concept

▶ Oxy-combustion gas streams can contain over 1% SO₂

- Likely candidate technology for new builds or × retrofits
- Currently managed through $SO₂$ scrubbers ٠

\blacktriangleright Chemistry behind SO₂ removal

- In wet FGD process, $SO₂$ becomes sulfurous acid:
- $SO_2 + H_2O \rightarrow H_2SO_3$
- Combines with limestone
- $CaCO₃ + H₂SO₃ \rightarrow CaSO₃ + H₂O + CO₂$

To form sulfites, which can be oxidized to sulfates

In situ stripping mimics FGD process but deep underground

- More economically favorable when retrofitting existing power plants for $CO₂$ capture
- Produce pipeline grade $CO₂$ for EOR/EGR with no п additional capital or operating costs for FGD

Glezakou, V. A., B. P. McGrail, and H. T. Schaef. 2012. "Molecular Interactions of $SO₂$ with Carbonate Minerals under Co-Sequestration Conditions: A Combined Experimental and Theoretical Study." *Geochim. Cosmochim. Ac. 92:265-274.*

Low-water environments: Does $SO₂$ stripping occur?

• **Results**

- Sulfur species permanently removed from $scCO₂$ phase
- Solid sulfur products
	- Surface coatings form very rapidly
	- Hannebachite $(CaSO₃.0.5H₂O)$

• **Utilization**

- Carbonate reservoirs are widespread and appear well suited for accepting mixed $CO₂$ -SO₂ gas streams
- In situ stripping could be used for gas cleanup
	- More economically favorable when retrofitting existing power plants for $CO₂$ capture
	- EOR with no additional capital or • Produce pipeline grade $CO₂$ for operating costs for FGD

Evaluating potential of $CO₂$ use in shales for enhanced gas recovery and storage

Objective: Identify early opportunities for utilization of $CO₂$ in secondary shale gas recovery

Additional gas recovery potential via CO₂-EGR

- 27 USGS assessment units, 10 basins
- 96 390 TCF at EGR:EUR ratios of $0.25 - 0.75$
- Potential total value of \$350-1500 billion
- *Average* value of \$11-43 / tCO₂

CO2 storage potential

- Estimated via methane mass replacement as a function of depth
- Same 27 assessment units represent a $CO₂$ storage resource as large as 36,000 MMT CO₂
- Marcellus shale accounts for 25% of this total

Approach

- I. Improve understanding of permanent $CO₂$ gas trapping mechanisms in shales
- II. Conduct reservoir simulations to improve secondary recovery
- III. Address long term impacts to U.S. $CO₂$ 11 storage capacity

Fundamental Gas Adsorption Studies

Quartz Crystal Microbalance

- High mass sensitivity for micro weighing in pressurized environments
- Excellent for studying mineral-fluid interfaces including adsorption and chemical processes

Gas adsorption on Kaolinite

- N_2 ~0.1-0.2 mmol/g clay
- $scCO₂$ adsorption reaches a max near 0.4 g/cm³ (50 $^{\circ}$ C)

Computational Studies of CO₂/N₂ Adsorption on Kaolinite

- (I) $CO₂$ molecules adsorb almost parallel to the kaolinite surface
- (II) $CO₂$ aggregation in characteristic distorted T-shaped orientation (max $-0.35 - 0.4$ g/ml)
- (III) Desorption occurs after the crossover point (~0.2 eV, green line)

Clay Expansion/Contraction

- **Experiments**: Exposing variable hydrated Na+ montmorillonite (Na-SWy-2) to anhydrous $scCO₂$ (90 bar and 50 \degree C)
	- Structural changes (XRD)
	- $H₂O$ concentrations in scCO₂ or on clay
- Dehydration processes dominate when clay is in a ~1W or 2W hydration state
	- Water partitioning from clay into $scCO₂$
	- $scCO₂$ entering /exiting interlayer
- Mineral volume changes

Application: Clay expansion due to CO₂ and water intercalation could reduce reservoir permeability and limit injectivity/recovery

Molecular Modeling: interactions of $CO₂$ with **Montmorillonites**

- **Objective**: Estimate relative abundance of H_2O/CO_2 intercalated in montmorillonites
	- 1W \sim 4-6 H₂O and 4 CO₂ per interlayer $Ca²⁺$ cation
	- $CO₂$ coordinates with the interlayer cation and organizes into layers
	- Higher $CO₂$ concentrations produce preferred distorted T-shaped orientation
- Enhance gas recovery implications

Findings: Calculations show bonding interactions of $M^{n+}/CO₂$ (about 30% less than M^{n+}/H_2O)

Experimental in situ IR Data:

- Montmorillonite: ATR-IR spectrum narrowed, indicating rotationally constrained $CO₂$.
- Kaolinite: No Change.

Accomplishments to Date

Multicomponent mixed gas transportation in pipelines and wellbores

- Water content thresholds established for corrosion initiation in $CO₂$ -SO₂ mixtures
- MD simulations illustrate reaction paths and reaction products
- High impact publications (2nd most cited paper in *Energy Procedia*) and new programs

CO2 storage in unconventional reservoirs

- Demonstrated feasibility of in situ scrubbing of $SO₂$ from gas phase in carbonate reservoirs
- Advancing understanding of $CO₂$ trapping mechanisms in shales
	- In situ techniques allow separation of mechanisms (adsorption, intercalation, chemical reaction)
	- DFT simulations providing critical mechanistic understanding necessary for implementation in reservoir simulations

Summary

– Key Findings

- Pipeline and wellbore construction materials are susceptible to corrosion processes in mixed gas systems containing small amounts of water
- Mixed gases can be stripped of contaminants in suitable subsurface reservoirs eliminating need for surface scrubbers when doing $CO₂$ capture retrofits
- FY13 Activity Summary
	- Transition initial carbon steel corrosion work into casing materials of importance for constructing co-sequestration injection wells
	- Initiate new activity in mixed gas storage and utilization in shale gas formations
		- Distinguish among trapping mechanisms through
		- Apply MD simulations to understand reaction mechanisms
		- Construct first principles based model for fate and transport of multicomponent gas mixtures in fractured shale gas reservoirs

Appendix

– These slides will not be discussed during the presentation, but are mandatory

Organization Chart

- Project team has participants that cut across the Energy & Environment and Fundamental Sciences Directorates at PNNL
- Pacific Northwest National Laboratory is Operated by Battelle Memorial Institute for the Department of Energy

Gantt Chart

Bibliography

- Glezakou, V-A., BP McGrail, HT Schaef (2012) "Molecular interactions of $SO₂$ with carbonate minerals under co-sequestration conditions: a combined experimental and theoretical study", *Geochimica et Cosmochimica Acta*, in press (DOI: 10.1016/j.bbr.2011.03.031).
- Windisch Jr, CF, HT Schaef, PF Martin, AT Owen, and BP McGrail (2012), "Following ¹⁸O uptake in scCO₂-H₂O mixtures with Raman spectroscopy", *Spectrochimica Acta Part A* 94 186-191.
- Windisch, C. F., V. A. Glezakou, et al. (2012). "Raman spectrum of supercritical $(CO₂)$ -O-18 and re-evaluation of the Fermi resonance." Physical Chemistry Chemical Physics **14**(8): 2560-2566.
- Tian, Jian, Praveen K. Thallapally and B Peter McGrail, (2012). "Porous organic molecular materials", *CrystEngComm*, 2012, 14 (6) 1909-1919.
- Liu, Jian, Praveen K. Thallapally, B. Peter McGrail, Daryl R. Brown and Jun Liu, (2012), "Progress in adsorption-based CO₂ capture by metal–organic frameworks", *Chem. Soc. Rev.*, 41, 2308-2322.
- Glezakou, V.-A., R. Rousseau, L. X. Dang, and B. P. McGrail. 2010. "Structure, Dynamics and Vibrational Spectrum of Supercritical CO₂/H₂O Mixtures from Ab Initio Molecular Dynamics as a Function of Water Cluster Formation." *Phys Chem Chem Phys* **12**(31):8759-71.

Bibliography

- Thallapally, P. K., R. K. Motkuri, C. A. Fernandez, B. P. McGrail, and G. S. Behrooz. 2010. "Prussian Blue Analogues for $CO₂$ and So₂ Capture and Separation Applications." *Inorg. Chem.* 49(11):4909-4915.
- Windisch CF, Jr, PK Thallapally, and BP McGrail. 2010. "Competitive Adsorption Study of CO₂ and SO₂ on Co^{ll}3[Co^{ll]}(CN)₆]₂ Using DRIFTS."*Spectrochimica Acta. Part A*, *Molecular and Biomolecular Spectroscopy* **77**(1):287–291.
- Tian J, R. K. Motkuri, and P. K. Thallapally. 2010. "Generation of 2D and 3D (PtS, Adamantanoid) Nets with a Flexible Tetrahedral Building Block." *Crystal Growth & Design* **10**(9):3843- 3846.
- Nune SK, PK Thallapally, and BP McGrail. 2010. "Metal Organic Gels (MOGs): A New Class of Sorbents for CO₂ Separation Applications." *Journal of Materials Chemistry* **20**(36):7623-7625.
- Fernandez, CA, Nune, SK, Motkuri, RK, Thallapally, PK, Wang, CM, Liu, J, Exarhos, GJ, McGrail, BP, 2010. "Synthesis, Characterization, and Application of Metal Organic Framework Nanostructures". *Langmuir*, 26 (24), 18591-18594.
- Motkuri, RK, Thallapally, PK, McGrail, BP, Ghorishi, SB, Dehydrated Prussian blues for CO2 storage and separation applications. *Crystengcomm* 2010, 12 (12), 4003-4006.
- Glezakou, V. A., L. X. Dang, and B. P. McGrail. 2009. "Spontaneous Activation of $CO₂$ and Possible Corrosion Pathways on the Low-Index Iron Surface Fe(100)." *Journal of Physical Chemistry C* 113.

Bibliography

• McGrail, B., H. Schaef, V. Glezakou, L. Dang, P. Martin, and A. Owen. 2009. "Water Reactivity in the Liquid and Supercritical CO₂ Phase: Has Half the Story Been Neglected?" In Proceedings of *GHGT-9*, Energy Procedia.(9):3691-3696.

Co-sequestration in carbonate reservoirs

- **Goal**: Designing laboratory tests to simulate subsurface conditions
- **Experimental Approach**:

• **Results**: Carbonate reservoirs are reactive and strip aqueous dissolved gaseous $SO₂$ from solution to precipitate solid sulfur bearing minerals

24 Dolomite suspended above H_2O line contained no sulfur bearing reaction products

Energy profile for initial steps of sulfation reactions: Surface defects do the trick!

- \Box Surface defects radically change the energy profile of sulfation reaction
- \Box Formation of SO₃ proceeds with small barrier, ~0.5 eV
- \square Estimated rates \sim 10-10⁴ s⁻¹ • **Application to clay minerals**
	- $-$ Pressure and viscosity effects accurately removed
	- Gas adsorption measured $a\overline{s}$ a $_{0.5}$ function of pressure
		- N_2 uptake \sim 3.1 mmol/g clay
		- $CO₂$ update $~1.1$ mmol/g clay
	- **Utilization**
		- Measure adsorbed gas concentrations on shales

Steel Corrosion with Mixed Gases

Mixed Gas Chemistry

- Surface corrosion products develop after 3 hours
	- Different surface corrosion products form including an unexpected Mn sulfite phase
- Water threshold
	- Tests with less water (300 ppmw) indicate a delay in onset of visible surface corrosion
	- Increases in $H₂O$ content produce more corrosion

Molecular Modeling: interactions of CO₂ with H₂O and Ca²⁺

- Hydrated ion behavior in dry $scCO₂$
	- Segregation of hydrated Ca2+
	- Average Ca2+ and C distance >5 Å
	- Attractive interactions between anhydrous ions and $CO₂$ and monomeric H_2O solvated in $CO₂$
	- $Ca-CO₂ 3.6Å$

Acoustically Responsive Contrast Agents for Enhanced Seismic Monitoring of Injected CO₂ in Geologic Formations

- MOF nanomaterials with high surface area and excellent porosity which respond through resonant absorption modes will be used to track injected $CO₂$ via conventional seismic imaging or by new laser Doppler vibrometry methods.
- \triangleright The resonant modes are enabled through librational modes in the nanoparticles imparted through use of flexible organic building blocks used to construct their framework.
- \triangleright Once a stable CO₂ nanofluid is formed, acoustic contrast property evaluation will be performed by velocity measurements under pressure using core flood experiments. [Nune6149-3-2_00.dif] Nune6149-3-2
- \triangleright Flexible ligand L1 is synthesized for making flexible MOFs
- Flexible MOF Ni-L1 synthesized using hydrothermal conditions.

Rational for Examining Water Bearing CO₂

- Pipeline specifications vary and are largely related to end user application, i.e. EOR
	- Dry $CO₂$ and $CO₂$ -H₂S streams are unreactive with pipeline steels
	- Knowledge gap for $CO₂$ streams containing intermediate water content
	- Multistage compression can be used п reduce water content in $CO₂$ stream and potentially eliminate dehydration system
- Initially dry liquid or supercritical $CO₂$ quickly absorbs water
- Reaction mechanisms of solvated water, $CO₂$, and contaminants in CO₂ stream are poorly understood
- Well-defined concepts in aqueous solutions do not have corresponding thermodynamic meaning
- Molecular simulations provide insights into surface interactions

$3.0\overline{\smash{\big)}\ 2.5\,\overline{\smash{\big)}\ 2.5}}$ 30 Mol Fraction of H₂O 25 2.0^o 100°C ৳ 20 90°C Fraction 1.5 15 75°C 60°C 1.0 10 50°C $0.5\overline{\mathsf{S}}$ 5 25° C Ω 0.0 100 200 300 400 500 600 O Pressure, Bar Spycher et al. 2003

Mutual Solubilities

Implication to Reservoir Rocks

- \triangleright Only basic experimental scoping studies on rock- $CO₂$ -water systems available
	- Regnault et al. 2005 (200°C, 105/160 several pure mineral phases)
	- Lin, et al. 2008 (100°C, <1 week, granite)
- 29 \triangleright No experiments or modeling with mixed gas WBSFs