Management of Water from CCS: Life Cycle Water Consumption for Carbon Capture and Storage

Project Number 49607

Christopher Harto Argonne National Laboratory

> U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013

- Program goals being addressed.
 - Develop technologies to improve reservoir storage efficiency while ensuring containment effectiveness.
- Project benefits statement.
 - This work supports the development of active reservoir management approaches by identifying cost effective and environmentally benign strategies for managing extracted brines (Tasks 1 + 2).
 - This work will help identify water related constraints on CCS deployment and provide insight into technology choices that can help reduce these constraints (Task 3)

Project Overview: Goals and Objectives

- Task 1 (FY10/11) Analyze geochemical composition of deep saline aquifers, identify viable options for managing extracted water, estimate management costs, and evaluate options for beneficial reuse. (Completed)
- Task 2 (FY11/12) Quantify the environmental costs and benefits of a range of viable extracted water management practices to identify those with the potential to manage extracted brines with the lowest cost and environmental impact. (Final Report pending NETL review)
- Task 3 (FY13/14) Quantify the life cycle water consumption from coal electricity production with carbon capture and geological carbon sequestration. The analysis will consider a range of scenarios with different capture and sequestration technologies to assess their relative impact on water resources. (In Progress)

Task 1 – Key Findings

- Geochemical composition analyzed for 61 deep saline aquifers identified with potential for geological sequestration
- Potential extracted water management practices identified including multiple beneficial use options based upon existing produced water management practices
- Current cost data obtained and analyzed for existing produced water management practices with potential parallel applications for extracted water management

Management Practice	Cost Range (\$/bbl)*	Cost to CCS (\$/ton CO ₂)
Reverse Osmosis	\$1.00-\$3.50	\$8.80-\$31.00
Thermal Distillation	\$6.00-\$8.50	\$53.00-\$75.00
UIC Injection	\$0.05-\$4.00	\$0.45-\$35.00
Evaporation	\$0.40-\$4.00	\$3.50-\$35.00

4

*Quoted costs for produced water management and do not include transportation

Task 2 – Key Findings

- Hybrid life cycle assessment (LCA) approach used evaluate potential extracted water management practices for:
 - Energy consumption
 - GHG emissions
 - Net water savings
- Extracted water management practices identified which could manage extracted water while emitting less than 1% of the CO2 injected
- Cost of water management was estimated at \$1-3/ton CO2 injected
- Water transportation distance was identified as the primary driver of cost and environmental impact

- Project Goal: Quantify the life cycle water consumption from coal electricity production with carbon capture and geological carbon sequestration.
- Approach
 - Define processes to be evaluated
 - Select LCA methodology
 - Define system boundaries
 - Collect data and system parameters
 - Identify and address gaps
 - Addressed through additional data sources, modeling, or assumptions
 - Perform modeling to fill gaps and generate additional parameters
 - Integrate data across the life cycle for each technological pathway
 - Analyze results
 - Assess variability and uncertainty

- Power plants:
 - Subcritical coal with post combustion amine capture
 - Supercritical coal with post combustion amine capture
 - Oxycombustion at subcritical coal plant
 - Oxycombustion at supercritical coal plant
 - IGCC with capture
 - Subcritical coal without capture
 - Supercritical coal without capture
 - IGCC without capture
- Transportation, Storage, and Usage
 - Enhanced Oil Recovery
 - Enhanced Coal Bed Methane
 - Deep Saline Aquifer
 - Assess Impact of Transport Distance

- Hybrid life cycle assessment (LCA) approach used to compare water consumption across multiple CCUS technology pathways for coal power plants
- Hybrid LCA combines process based LCA approach with economic input-output LCA approach (EIOLCA).
- Process approach (used for direct inputs)
 - Ideal for well characterized processes
 - Requires lots of specific data
 - Suffers from cut-off error
- EIOLCA approach (used for capital equipment)
 - Suitable for more general processes
 - Only requires costs
 - Suffers from aggregation error
- Indirect water consumption due to energy consumption and parasitic loads included in analysis

- Processes Included in Analysis:
 - Coal Mining (Process)
 - Power Plant Operations (Process)
 - Capture System Operations (Process)
 - Power Plant and Capture System Capital (EIOLCA)
 - CO2 Compression and Transport Energy (Process)
 - Pipeline Capital (EIOLCA)
 - Injection Well Construction (Process)
 - Injection Well Operation (Process)
- Processes Excluded:
 - Transportation of fuel
 - Manufacture of chemicals consumed for capture systems and other pollution control processes
 - Decommissioning and waste disposal

- Literature Review
 - Previous Water Studies
 - Often focused on a minimal number of system designs
 - Often only include capture, not complete LCA
 - Previous LCA Studies
 - Most don't include water
 - Can provide energy requirements and important system parameters
 - Technoeconomic Analyses
 - Can provide EIOLCA inputs and important system parameters
 - Reports on demonstration projects and pilot studies
 - Can provide system parameters and well and pipeline designs
- Modeling
 - Aspen Modeling
 - Argonne Well Analysis Tool

- Initial Literature review completed
- Key system parameters collected and aggregated into a database by life cycle stage
- Review of the data and parameters in progress
- Additional literature will be included as necessary as data gaps are identified

- Previously developed Aspen models were utilized to evaluate the water footprint of Amine and Oxyfuel capture systems
- Based upon a new 450 MW PC power plant
- Aspen models originally developed for: Doctor, R., 2012, Future of CCS adoption at existing PC plants: economic comparison of CO₂ capture and sequestration from amines and oxyfuels, ANL/ESD/12-9

	Greenfield PC Bo	oiler 450 MW	Greenfield Amine	e CCS 291 MW net	Greenfield Oxyfuel CCS 296 MW net				
	Non Cooling Water	Consumptive	Non Cooling Water		Non Cooling Water	Consumptive			
SYSTEM	Consumption (gal/Mwhnet)	Cooling Water (gal/Mwhnet)	-	Consumptive Cooling Water (gal/Mwhnet)	-	Cooling Water (gal/Mwhnet)			
Boiler/Steam/SCR/Baghouse 450 MW									
Greenfield	11.0	500.0	17.0	773.9	16.7	759.5			
LSFO - Limestone -Forced Oxidation 450									
MW	53.8	N/A	83.3	N/A	81.8	N/A			
Oxyfuel - Air Separation Unit 450 MW						2.2			
Flue Gas Compression 450 MW			N/A	53.6	N/A	10.7			
Dual Alkali 450 MW			0.8	N/A	0.8	N/A			
Amine CCS 450 MW			58.6	393.9					
CO2 Liquefaction and Pumping 450 MW			(26.6)	39.3	(26.1)	42.1			
Sub Total	64.8	500.0	133.1	1,260.6	73	815			
Total	565	5	13	94	888				

- Argonne has previous developed an LCA analysis tool for wells drilled for geothermal and oil and gas development.
- This model will be updated to include carbon storage wells including:
 - Deep Saline Aquifers
 - EOR Wells
 - Enhanced Coal Bed Methane Wells
 - Monitoring Wells
- Tool calculates total water, energy, and materials required to drill a well based upon reference well designs and user defined well depth

Argonne Task 3 – Current Project Status

- Define processes to be evaluated (Complete)
- Select LCA methodology (Complete)
- Define system boundaries (Complete)
- Collect data and system parameters (Complete*)
- Identify and address gaps (In Progress)
- Perform modeling to fill gaps and generate additional parameters (In Progress)
- Integrate data across the life cycle for each technological pathway (FY14Q1)
- Analyze results (FY14Q1)

Accomplishments to Date

- A wide range of extracted water management practices have been evaluated both qualitatively and quantitatively
- Multiple extracted water management practices have been identified as likely to be both economically and environmentally viable
 - Reverse Osmosis
 - Mechanical Vapor Compression
 - Direct Reuse
 - Injection for Disposal or Hydrological Purposes
- Initial data collection and modeling has been performed for the evaluation of the life cycle water consumption from carbon capture, utilization, and storage

Summary

- Key Findings
 - Reverse osmosis, mechanical vapor compression, direct reuse, and injection for disposal were all identified as likely environmentally and economically viable technologies for managing extracted water
 - (PRELIMINARY) Carbon Capture adds anywhere from 50-100% to the water footprint of coal electricity generation
 - IGCC appears to be the most water efficient capture system design
- Future Plans
 - Complete CCUS water LCA study
 - Evaluate the role that water extraction can play in mitigating the larger water footprint of electricity production with carbon capture and storage

Appendix

Organization Chart

- PI:
 - Christopher Harto
- Other Researchers
 - John Veil, Retired (Task 1 only)
 - Richard Doctor, *Retired* (Task 3 only)
 - David Murphy (Task 3 only)
 - Robert Horner (Task 3 only)
 - Ellen White (Task 3 only)

Gantt Chart

																·			
TaskMilestone Description		FY10			FY11			FY12				FY13				FY14			
		Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2
Task 1 -	Qualitative assessment																		
Extracted Water	of options for																		
from CCS	managing extracted							~											
	water based upon																		
	produced water																		
	mangament practices																		
Task 2 -																			
Extracted Water	Quantification of the																		
from CCS:	life cycle																		
Environmental	envirionmental costs													ĺ					
Cost/Benefit	and benefits of different																		
Analysis	extracted water																		
	management scenarios.																		
Task 3 -	Quantification of the																		
Extracted Water	life cycle water																		$ \rightarrow $
from CCS: Water	consumption for																		
LCA	electricity production																		
	from coal generation																		
	with carbon																		
	sequestration																		

Bibliography

Technical Reports

- Harto, C.B., and J.A. Veil, 2011, "Management of Water Extracted from Carbon Sequestration Projects," Prepared for the US DOE National Energy Technology Laboratory Carbon Sequestration Program by Argonne National Laboratory, ANL/EVS/R-11/1, January.
- Harto, C.B., 2012, "Life Cycle Assessment of Water Management Options used for Managing Brines Extracted from Deep Saline Aquifers used for Carbon Storage," DRAFT.
- Conference Papers
 - Veil, J.A., Harto, C.B., and A.T. McNemar, 2011, "Management of Water Extracted From Carbon Sequestration Projects: Parallels to Produced Water Management," SPE 140994, Presented at SPE Americas E&P Health, Safety, Security and Environmental Conference, Houston, Texas, 21–23 March 2011.
- Conference Presentations
 - Harto, C.B., 2011, "Environmental Costs of Managing Geological Brines Produced or Extracted During Energy Development," presented at the International Petroleum and Biofuels Environmental Conference, Houston, TX, November 8-10.
 - Harto, C.B., 2011, "Environmental Costs of Managing Geological Brines Produced or Extracted During Energy Development," presented at the Groundwater Protection Council Annual Forum, Atlanta, GA, September 25-28.
 - Harto, C.B., Veil, J.A., and McNemar, A., 2011, "Extracting Water from Carbon Sequestration Projects: Quantities, Costs, and Environmental Considerations", presented at the 10th Annual Conference on Carbon Capture & Sequestration, Pittsburgh, PA, May 2-5.
 - Harto, C.B., Veil, J.A., and McNemar, A., 2010, "Managing Water from CCS Programs", presented at the Groundwater Protection Council Water Energy Sustainability Symposium, Pittsburgh, PA, September 26-29.