# Integrated Electrochemical Processes for CO<sub>2</sub> Capture and Conversion to Commodity Chemicals

Project Number: DE-FE0004271

Dr. Jie Wu,<sup>1,2</sup> Dr. Jennifer A. Kozak,<sup>1,2</sup> Xiao Su,<sup>2</sup> Dr. Fritz Simeon,<sup>2</sup> Prof. Timothy F. Jamison\*,<sup>1</sup> and Prof. T. Alan Hatton,\*,<sup>2</sup>

<sup>1</sup>Department of Chemistry and <sup>2</sup>Department of Chemical Engineering Massachusetts Institute of Technology

U.S. Department of Energy

National Energy Technology Laboratory
Carbon Storage R&D Project Review Meeting
Developing the Technologies and
Infrastructure for CCS
August 20-22, 2013

## Presentation Outline

- Motivation, Goals, Objectives
- Background
- Cyclic Carbonate Synthesis via Catalytic Coupling of CO<sub>2</sub> and Epoxides
- Cyclic Carbonate Synthesis via oxidative carboxylation using CO<sub>2</sub> and Olefins
- Conclusions

# Benefit to the Program

- Identify the Program goals being addressed.
  - Develop technologies to demonstrate that 99 percent of injected CO<sub>2</sub> remains in the injection zones.
- The research project is developing a novel approach to capturing and converting CO<sub>2</sub> into commodity chemicals, which may thus reduce the burden on CO<sub>2</sub> storage sites, in addition to providing a means to reduce anthropogenic CO<sub>2</sub> emissions and an inexpensive method for producing useful materials from CO<sub>2</sub>.

## **Project Overview:**

## Goals and Objectives

- To develop and demonstrate a novel chemical sequestration technology that utilizes CO<sub>2</sub> from dilute gas streams generated at industrial carbon emitters as a raw material in order to produce useful commodity chemicals.
  - Single electrochemical system for CO<sub>2</sub> capture and chemical conversion
  - Coupled system for CO<sub>2</sub> capture and chemical conversion

## **Project Overview:**

#### Goals and Objectives

- To develop and demonstrate a novel chemical sequestration technology that utilizes CO<sub>2</sub> from dilute gas streams generated at industrial carbon emitters as a raw material in order to produce useful commodity chemicals.
  - Single electrochemical system for CO<sub>2</sub> capture and chemical conversion
  - Coupled system for CO<sub>2</sub> capture and <u>chemical</u> conversion

# **Technical Status**

# Accomplishments to Date

- A novel catalytic method for the continuous chemical conversion of CO<sub>2</sub> has been developed and thoroughly investigated mechanistically.
- A mechanism-guided design of sequential continuous flow systems has been developed to achieve a variety of carbonates using CO<sub>2</sub> and olefins.
  - Detailed mechanistic exploration.
  - Several advantages over existing methods.
  - Springboard for development of several other classes of CO<sub>2</sub> conversion.

#### Motivation for CO<sub>2</sub> Capture, Sequestration, and Conversion

#### Anthropogenic carbon dioxide (CO<sub>2</sub>)

- considered a primary cause of global climate change
- coal-fired power plants, and the petroleum and natural gas industries account for 86% of anthropogenic CO<sub>2</sub>
- we will continue to depend on nonrenewable fossil fuels for the next several decades

#### The CO<sub>2</sub> cycle is not balanced

- 3.9% excess (caused by anthropogenic CO<sub>2</sub>) with respect to the yearly CO<sub>2</sub>-flow in the natural "carbon cycle"
- Only 30-35% of the chemical energy content associated with anthropogenic CO<sub>2</sub> emissions is converted into various forms of energy.
- 65-75% is lost as heat to the Earth's atmosphere.



http://www.telegraph.co.uk/earth/earthnews/5257162/Power-plants-could-store-carbon-dioxide-under-North-Sea.html

#### Carbon Dioxide as a Chemical Feedstock

- What is the motivation for producing chemicals from CO<sub>2</sub>?
  - CO<sub>2</sub> is an inexpensive, non-flammable, non-toxic feedstock that is stable, easy to store, and readily available.
  - It can be used to replace toxic chemicals such as phosgene and isocyanates.
  - CO<sub>2</sub> is a renewable resource, as compared to oil or coal; the future supply of fossil fuels is considered limited.
  - The use of CO<sub>2</sub> in new routes to existing chemical intermediates and products could be more efficient and economical than current technologies.
  - The production of chemicals from CO<sub>2</sub> could have a small but likely significant positive impact on the global carbon balance.
  - CO<sub>2</sub> is an exceptionally inexpensive source of carbon, at ~0.1 ¢/mol.
  - For comparison: Ethylene, ~3 ¢/mol (1.5 ¢/mol of C atoms); propylene, (~5 ¢/mol, 1.5 ¢/mol of C atoms).

Arakawa, H.; Aresta, M.; Armor, J. N.; Barteau, M. A.; Beckman, E. J.; Bell, A. T.; Bercaw, J. E.; Creutz, C.; Dinjus, E.; Dixon, D. A.; Domen, K.; DuBois, D. L.; Eckert, J.; Fujita, E.; Gibson, D. H.; Goddard, W. A.; Goodman, D. W.; Keller, J.; Kubas, G. J.; Kung, H. H.; Lyons, J. E.; Manzer, L. E.; Marks, T. J.\*; Morokuma, K.; Nicholas, K. M.; Periana, R.; Que, L.; Rostrup-Nielson, J.; Sachtler, W. M. H.; Schmidt, L. D.; Sen, A.; Somorjai, G. A.; Stair, P. C.; Stults, B. R.; Tumas, W. *Chem. Rev.* **2001**, *101*, 953.

## Gas/Liquid Continuous Flow Chemistry

#### **Traditional batch reactions:**



#### **Continuous flow synthesis:**



- Low interaction and mass transfer
- Interfacial area of ca. 100-300 m<sup>2</sup>/m<sup>3</sup><sub>liq</sub> •
- High capital and infrastructure costs •
- Associated safety factors

- Exceedingly high surface-to-volume ratio
- Efficient heterogeneous mass-transfer
- Excellent reproducibility
- Reduced equipment footprint and labor work

## Conversion of CO<sub>2</sub> Using Epoxides

#### Bromine-catalyzed conversion of CO<sub>2</sub> and epoxides to cyclic carbonates:

- polar aprotic solvents
- electrolytes in lithium ion batteries
- constituents in oils and paints
- antifoam agents for antifreeze and plasticizers
- raw materials for the synthesis of polycarbonates and polyurethanes

Kozak, J. A.; Wu, J.; Su, X.; Simeon, F.; Hatton, T. A.; Jamison, T. F., "Bromine-Catalyzed Conversion of CO<sub>2</sub> and Epoxides to Cyclic Carbonates under Continuous Flow Conditions," **2013** (*submitted for publication*).

#### Schematic of the Continuous Reactor



Slug flow reduces dispersion; provides efficient mass transfer contact Well-controlled conditions for evaluation of reaction kinetics and mechanisms

#### Kinetic Study

$$\frac{d[Epoxide]}{dt} = -\left(k_{10}^{exp} + k_{1}^{exp} [BPO]_{0}\right)[NBS]_{0}[Epoxide]$$



# Proposed Mechanism Based on Kinetics Investigations

$$r_{overall} = \frac{k_4 k_{r4} [k_{10} + k_1 [BPO]] [NBS] [Epoxide]}{2(k_4^2 - k_{r4}^2)}$$

## Capture of CO<sub>2</sub> Using Simple Olefins

#### Mechanism-guided flow design to avoid reagent incompatibility:

#### Originally designed multi-stream flow



#### Mechanism-quided design of flow



## Possible Reaction Pathways



## Mechanistic Study

- Water was necessary
- DBU significantly decreased the rxn rate (indicated formation of DBU-NBS complex)
- CO<sub>2</sub> increased the reaction rate (indicated DBU-CO<sub>2</sub> complex formation)
- DMF helped formation of epoxide.

<sup>&</sup>lt;sup>a</sup> Conversion and yield are based on analysis of crude <sup>1</sup>H NMR spectra using trichloroethylene as the external standard.

## Initial Two-Stream Gas/Liquid Flow Setup





: 100% conversion 85% yield PhO : 15% conversion 10% yield

## Sequential Transformations in Flow

## Sequential Flow Setup



## Sequential Transformation in Flow

#### Comparison of sequential transformations between batch and flow:



## Sequential Transformation in Flow



#### feature

- sequential reactions
- excellent surface-to-volume ratio
- packed-bed reactor
- acetone as co-solvent
- elevated temperature and pressure
- no headspace

#### function

- significantly enhances the reaction rate; avoids reagent incompatibility
- increases the reaction rate;
   suppresses byproduct formation
- increases the reaction rate; more steady flow
- avoids phase-transfer-reagents
- provides rate enhancement
- reduced equipment footprint (safety)

## An Integrated Capture and Conversion System



Gas/Liquid Separator

Power Supply

**EMAR Pump** 

Syringe Pump



Absorber

EMAR Cell

**Coil Reactor** 

**Heated Water Bath** 

# Summary

#### Key Findings

- A novel mechanism of epoxide activation was discovered, and its impact may be very broad.
- A sequential flow system works best for the conversion of CO<sub>2</sub> using olefins due to the incompatibility between DBU and NBS.

#### - Lessons Learned

 Continuous processing is superior to batch for elucidation of conversion mechanisms and kinetics

# Acknowledgments

- MIT
  - Dr. Jie Wu
  - Dr. Jennifer A. Kozak
  - Xiao Su
  - Dr. Fritz Simeon
  - Prof. Timothy F. Jamison
  - Prof. T. Alan Hatton
- Siemens (Life Cycle Analyses)
  - Dr. Elena Arvinitis
  - Dr. Noorie Rajvanshi
  - Dr. Amit Kapur
- DOE-NETL
  - Dr. Bill O'Dowd

# Appendix

These slides will not be discussed during the presentation, but are mandatory

# **Gantt Chart**

Sub-Task



# **Organization Chart**



# **Gantt Chart**

| Sub- | Project Milestone                                                                                                                 | E |             |   |   | _ | n:10<br>rojec | _ | _ |   |            | /2013    |    | Planned        | Planned      | Actual         | Actual       |                                                                                                                                                    |  |
|------|-----------------------------------------------------------------------------------------------------------------------------------|---|-------------|---|---|---|---------------|---|---|---|------------|----------|----|----------------|--------------|----------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Task | Description                                                                                                                       |   | ject Year 1 |   |   | 2 |               |   |   |   | Project Ye |          | 12 | Start<br>Date: | End<br>Date: | Start<br>Date: | End<br>Date: | Comments                                                                                                                                           |  |
| 1.1  | Project management plan                                                                                                           | V | Ħ           | Ť | Ė | Ť | Ť             | Ė | Ť | Ė | Ë          | <u> </u> |    | 10/01/10       | 12/31/12     | 10/01/10       |              |                                                                                                                                                    |  |
| 1.2  | Project management                                                                                                                | ٧ | ~           | ٧ | ~ | ~ | ~             | ٧ | ~ | ٧ | ~          | ~        |    | 10/01/10       | 12/31/12     | 10/01/10       | 12/31/12     | Submission of Q1 progress report                                                                                                                   |  |
| 2.1  | Chemical reaction between<br>bis(carbonate)s and<br>electrophiles                                                                 | ٧ | ٧           |   |   |   |               |   |   |   |            |          |    | 10/01/10       | 03/31/11     | 10/01/10       | 03/31/11     |                                                                                                                                                    |  |
| 2.2  | Molecular characterization of "intermediate" complex                                                                              | ٧ | ~           |   |   |   |               |   |   |   |            |          |    | 10/01/10       | 03/31/11     | 10/01/10       | 03/31/11     |                                                                                                                                                    |  |
| 2.3  | Reaction kinetic analysis of<br>"intermediate" complex<br>formation                                                               |   |             | ٧ | V |   |               |   |   |   |            |          |    | 04/01/11       | 09/30/11     | 04/01/11       | 09/30/11     |                                                                                                                                                    |  |
| 2.4  | Electrochemistry of<br>"intermediate" complex<br>formation                                                                        |   |             | ٧ | ٧ |   |               |   |   |   |            |          |    | 04/01/11       | 09/30/11     | 04/01/11       | 09/30/11     |                                                                                                                                                    |  |
| 2.5  | Chemical sequestration<br>with various redox-active<br>molecules                                                                  |   |             | ~ | ~ |   |               |   |   |   |            |          |    | 04/01/11       | 09/30/11     | 04/01/11       | 09/30/11     |                                                                                                                                                    |  |
| 2.6  | Organocatalytic chemical sequestration of CO <sub>2</sub>                                                                         |   |             |   |   | ~ | ~             | ٧ | ~ |   |            |          |    | 10/01/11       | 09/30/12     | 10/01/11       | 09/30/12     | Investigation of organocatalyst<br>(NBS system) for production of<br>cyclic carbonate from cyclic oxide<br>and CO <sub>2</sub>                     |  |
| 2.7  | Reaction kinetic analysis of organocatalytic route for $\mathrm{CO}_2$ conversion                                                 |   |             |   |   | ~ | ~             | ٧ | ٧ |   |            |          |    | 10/01/11       | 09/30/12     | 10/01/11       | 09/30/12     | Reaction kinetic of<br>organocatalytic process (NBS<br>system) for cyclic carbonate<br>production from cyclic oxide and<br>CO <sub>2</sub>         |  |
| 2.8  | Organocatalyst for continuous chemical sequestration of CO <sub>2</sub>                                                           |   |             |   |   | ~ | ~             | ٧ | ٧ |   |            |          |    | 10/01/11       | 12/31/12     | 10/01/11       | 12/31/12     | Investigation of organocatalyst (NBS system) for production of cyclic carbonate from cyclic oxide and CO <sub>2</sub> with continuous flow reactor |  |
| 3.1  | Chemical analysis of integrated chemical sequestration                                                                            |   |             |   | ٧ | ~ | ٧             | ٧ | ٧ |   |            |          |    | 01/01/11       | 09/30/12     | 01/01/11       | 09/30/12     | Investigation of "active" catalyst in organocatalytic process for cyclic carbonate production from cyclic oxide and $\mathrm{CO}_2$                |  |
| 3.2  | Chemical sequestration<br>prototype unit                                                                                          |   |             |   |   |   |               | ٧ | ٧ |   |            |          |    | 04/01/12       | 09/30/12     | 04/01/12       | 09/30/12     | Development of continuous flow reactor.                                                                                                            |  |
| 4.1  | Life cycle environmental<br>analysis                                                                                              |   | ~           | V | ~ | 1 | ~             | ~ | ~ |   |            |          |    | 10/01/11       | 09/30/12     | 03/01/11       | 09/30/12     | Completion of LCA analysis                                                                                                                         |  |
| 4.2  | Life cycle cost analysis                                                                                                          |   | П           |   |   |   |               | V | V |   |            |          |    | 10/01/11       | 03/31/12     | 05/01/12       | 09/30/12     | Completion of LCC analysis                                                                                                                         |  |
| 5.1  | Investigate the impact of quality of CO <sub>2</sub> gas stream on the chemical conversion process                                |   |             |   |   |   |               |   |   |   |            |          |    | 10/01/12       | 09/30/13     |                |              |                                                                                                                                                    |  |
| 5.2  | Investigate and identify the required down-stream processing to isolate products and the catalyst                                 |   |             |   |   |   |               |   |   |   |            |          |    | 10/01/12       | 09/30/13     |                |              |                                                                                                                                                    |  |
| 5.3  | Evaluate the activity of<br>recycled catalyst in flow<br>micro-reactor                                                            |   |             |   |   |   |               |   |   |   |            |          |    | 10/01/12       | 09/30/13     |                |              |                                                                                                                                                    |  |
| 6.1  | Immobilize the active<br>organocatalysts in the<br>porous MOFs                                                                    |   |             |   |   |   |               |   |   | ~ | -          | -        |    | 10/01/12       | 09/30/13     | 10/01/12       |              | Synthesis of various MOFs                                                                                                                          |  |
| 6.2  | Evaluate the activity of<br>chemical conversion using<br>the heterogeneous<br>organocatalytic system in<br>the flow micro-reactor |   |             |   |   |   |               |   |   | > | V          | ~        |    | 10/01/12       | 09/30/13     | 10/01/12       |              | Modification of MOFs with phosphorous ligands                                                                                                      |  |
| 7.1  | Evaluate the direct<br>synthesis of cyclic<br>carbonates from olefins in<br>the flow microreactor                                 |   |             |   |   |   |               |   |   | ~ | ~          | ~        |    | 10/01/12       | 09/30/13     | 10/01/12       |              | Investigation of sequential process for cyclic carbonate from olefins and CO <sub>2</sub> with continuous flow reactor                             |  |
| 7.2  | Investigate the reaction<br>kinetics and mechanisms<br>for the direct synthesis of<br>cyclic carbonate from<br>olefins            |   |             |   |   |   |               |   |   | ~ | _          | ~        |    | 10/01/12       | 09/30/13     | 10/01/12       |              | Reaction kinetic for cyclic carbonate production from olefins and CO <sub>2</sub>                                                                  |  |

# Bibliography

#### **Publication:**

Kozak, J. A.; Wu, J.; Su, X.; Simeon, F.; Hatton, T. A.; Jamison, T. F., 2013, Bromine-Catalyzed Conversion of CO<sub>2</sub> and Epoxides to Cyclic Carbonates under Continuous Flow Conditions, *submitted for publication*.

Wu, J.; Simeon, F.; Hatton, T. A.; Jamsion, T. F., 2013, Mechanism-Guided Design of Flow System for Multicomponent Reactions: Conversion of CO<sub>2</sub> and Olefins to Cyclic Carbonates, *in preparation*.

#### **Conference Presentation:**

Rajvanshi, N.; Arvanitis, E.; Kapur, A.; Hatton, T. A.; Jamison, T. F.; Simeon, F.; Kozak, J. A., 2012, Environmental Life Cycle Assessment of Novel CO<sub>2</sub> Capture and Utilization Routes, LCA XII, Tacoma, Washington.

Wu, J.; Simeon, F.; Hatton, T. A.; Jamison, T. F. 2013, Mechanism-Guided Design of Flow Systems for Multicomponent Reactions: Conversion of CO<sub>2</sub> and Olefins to Cyclic Carbonates, Gordon Conference: Heterocyclic Compounds, Newport, RI.

# Gantt Chart (continued)

| Sub-<br>Task | Project Milestone Description                                                   | Project Duration:10/01/2010-<br>09/30/2011<br>Project Year 1 Project Year 2<br>Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 |   |   |   |   |   |   |  | Planned<br>Start<br>Date: | Planned<br>End<br>Date: | Actual<br>Start<br>Date: | Actual<br>End<br>Date: | Comments                                      |
|--------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|---|---|---|---|---|---|--|---------------------------|-------------------------|--------------------------|------------------------|-----------------------------------------------|
| 3.3          | Analysis of cell components for<br>integrated chemical<br>sequestration process |                                                                                                        |   |   |   |   |   |   |  | 10/01/11                  | 03/31/12                |                          |                        |                                               |
| 3.4          | Computer simulation of dynamic analysis                                         |                                                                                                        |   |   |   |   |   |   |  | 10/01/11                  | 03/31/12                |                          |                        |                                               |
| 4.1          | Chemical analysis of integrated chemical sequestration                          |                                                                                                        |   |   |   |   |   |   |  | 04/01/12                  | 09/30/12                |                          |                        |                                               |
| 4.2          | Optimization key components of integrated chemical sequestration                |                                                                                                        |   |   |   |   |   |   |  | 04/01/12                  | 09/30/12                |                          |                        |                                               |
| 4.3          | Chemical sequestration prototype unit                                           |                                                                                                        |   |   |   |   |   |   |  | 04/01/12                  | 09/30/12                |                          |                        |                                               |
| 5.1          | Life cycle environmental analysis                                               |                                                                                                        | 1 | 1 | 1 | 1 | 1 | 1 |  | 10/01/11                  | 09/30/12                | 03/01/11                 |                        | Life cycle assessment of different scenarios. |
| 5.2          | Life cycle cost analysis                                                        |                                                                                                        |   |   |   |   |   | 1 |  | 10/01/11                  | 03/31/12                | 05/01/12                 |                        |                                               |

# Bibliography

#### **Publication:**

Kozak, J. A.; Wu, J.; Su, X.; Simeon, F.; Hatton, T. A.; Jamison, T. F., 2013, Bromine-Catalyzed Conversion of CO<sub>2</sub> and Epoxides to Cyclic Carbonates under Continuous Flow Conditions, *submitted for publication*.

Wu, J.; Simeon, F.; Hatton, T. A.; Jamsion, T. F., 2013, Mechanism-Guided Design of Flow System for Multicomponent Reactions: Conversion of CO<sub>2</sub> and Olefins to Cyclic Carbonates, *in preparation*.

#### **Conference Presentation:**

Rajvanshi, N.; Arvanitis, E.; Kapur, A.; Hatton, T. A.; Jamison, T. F.; Simeon, F.; Kozak, J. A., 2012, Environmental Life Cycle Assessment of Novel CO<sub>2</sub> Capture and Utilization Routes, LCA XII, Tacoma, Washington.

Wu, J.; Simeon, F.; Hatton, T. A.; Jamison, T. F. 2013, Mechanism-Guided Design of Flow Systems for Multicomponent Reactions: Conversion of CO<sub>2</sub> and Olefins to Cyclic Carbonates, Gordon Conference: Heterocyclic Compounds, Newport, RI.