Optimizing and Quantifying CO₂ Storage Capacity/Resource in Saline Formations and Hydrocarbon Reservoirs DE-FE0009114

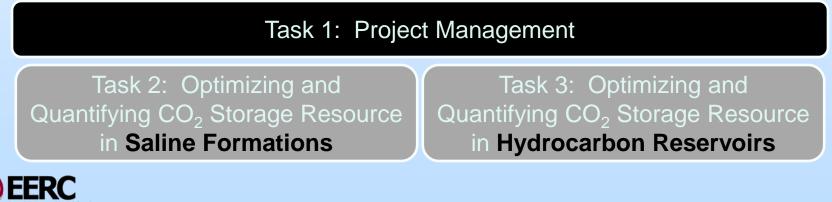
Charles D. Gorecki Energy & Environmental Research Center University of North Dakota

U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS

August 20-22, 2013

Presentation Outline

- Benefit to the Program
- Project Overview
- Technical Status
- Accomplishments to Date
- Summary


Benefit to the Program

- Develop technologies to improve reservoir storage efficiency while ensuring containment effectiveness.
- Develop best practice manuals (BPMs) for monitoring, verification, and assessment; site screening, selection, and initial characterization; public outreach; well management activities; and risk analysis and simulation.
- The research project is seeking to optimize carbon dioxide (CO₂) storage resource and containment in geologic formations by establishing field methodologies focused on quantifying and enhancing storage resource in saline formations and hydrocarbon reservoirs associated with enhanced oil recovery (EOR). These methodologies will better enable stakeholders to estimate, predict, and optimize storage resource and demonstrate long-term CO₂ storage in these formations. This project addresses the goals listed above.

Project Overview: Goals and Objectives

- To refine current methods and terms used to estimate CO₂ storage resource in saline formations and hydrocarbon reservoirs.
- Two concurrent areas of investigation (Tasks 2 and 3) will be undertaken to accomplish project goals:

Project Overview: Goals and Objectives (continued)

Task 2 Objectives

- Perform a literature review and update and expand the Average Global Database (AGD) with saline formation reservoir properties.
- Develop regional- and formation-scale geologic models using Schlumberger Carbon Services (Schlumberger) Petrel geologic modeling software package for several clastic and carbonate depositional environments (i.e., reservoir classes) and up to seven defined structural frameworks based on available real-world data.
- Perform CO₂ storage injection simulations on the models, using Computer Modelling Group Ltd. (CMG) GEM and CMOST software packages, to identify local and regional pressure buildup effects on reservoir storage resource, injectivity, storage efficiency, and plume footprint for the different reservoir classes.
- Perform simulations on the different regional models to determine ways to enhance storage resource and storage efficiency by using different well configurations, horizontal wells, and water extraction wells.
- Refine current methodologies and coefficients used to optimized CO₂ storage

Project Overview: Goals and Objectives (continued)

Task 3 Objectives

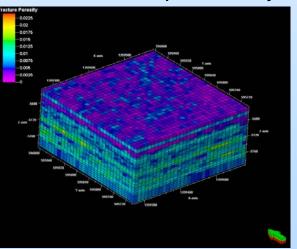
- Perform a literature review on current CO₂ EOR projects to develop a database with reservoir and CO₂ flooding properties for the different cases and reservoir types.
- Conduct reservoir evaluations on current and hypothetical CO₂ EOR projects to better define when an EOR project with incidental CO₂ storage changes to a) an EOR and CO₂ storage project and b) a CO₂ storage project with incidental hydrocarbon recovery.
- Develop pattern-sized geologic models and perform simulations to determine the effects that different reservoir/depositional types have on sweep efficiency, utilization factor, and CO₂ retention.
- Evaluate different types of injection strategies with respect to their ability to optimize utilization factor, storage permanence, and hydrocarbon recovery in different reservoir classes.
- Develop more refined methods for estimating CO₂ storage resource in hydrocarbon reservoirs and the terms used to estimate storage resource for different reservoir classes.

Project Overview: Goals and Objectives (continued)

 Accomplishment of goals will provide insight into the optimization of CO₂ efficiency, important factors for site selection, the impact of field activities on storage resource, and site-specific effects such as pressure, sweep efficiency, etc.

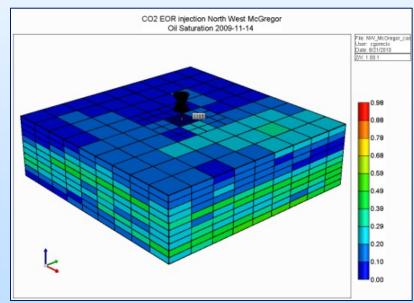
Success criteria

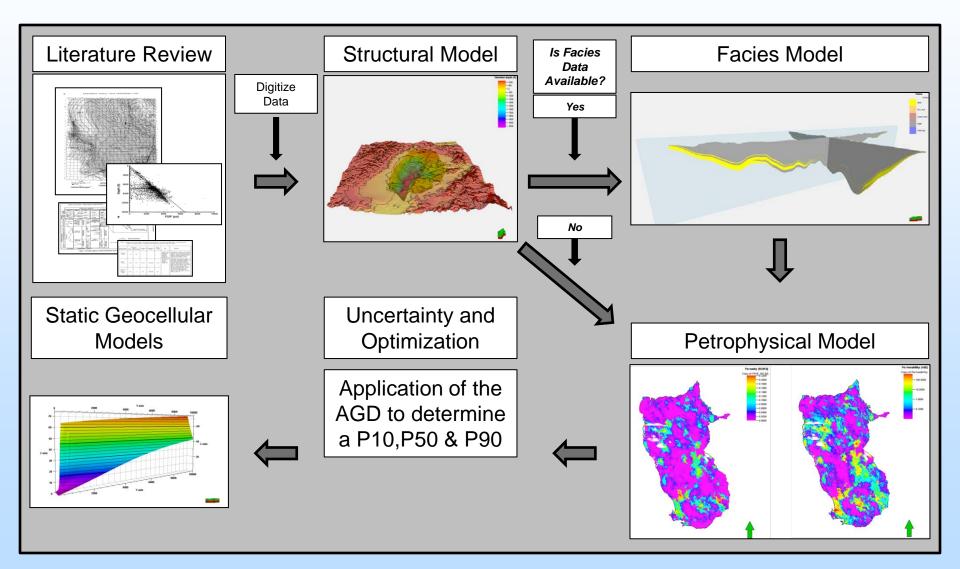
- Completion of literature review of current methodologies
- Collection of publicly available data for real-world reservoirs
- Creation of geocellular models for both saline formations and hydrocarbon reservoirs
- Accomplishment of dynamic CO₂ injection simulations investigating field- and regional-based effects (e.g., pressure)
- Development of a BPM

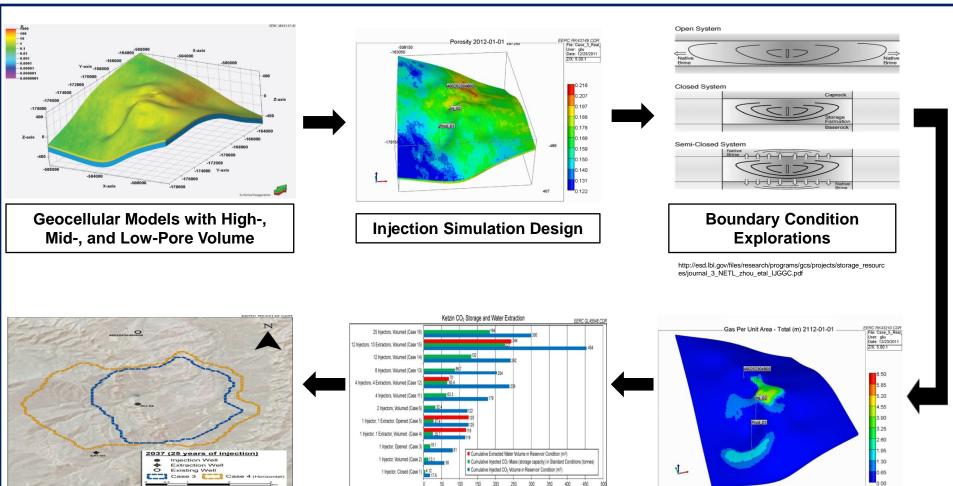

Technical Status – Task 2

Approach

- Literature review
- Build static geologic 3-D models using Petrel
 - Base case properties from publicly available data
 - P10, P50, P90 properties from expanded AGD
 - Ten selected formations covering seven major depositional environments
 - Nine base case models, both regional and formation scale, to capture effects of various depositional environments and heterogeneities
 - Both intracratonic and intermountainous basin deposition systems



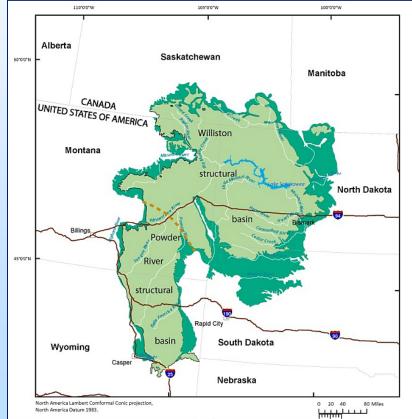

Approach (continued)


- Perform dynamic simulations using CMG software
 - Validate and optimize geologic models
 - Upscale base, high, mid, and low cases
 - Sensitivity analysis and numerical tuning
 - Perform predictive simulations
 - Pressure buildup
 - Sweep efficiency
 - Plume footprint

Storage Capacity Comparisons and Analysis Dynamic Storage Capacity estimates

xE6 Volume of Mass Injected CO2 and Water Extraction

Operational Storage Capacity Enhancement


Transitional Marine Formations (Fms)

Broom Creek Fm

- Eolian, marginal marine and marine sediments
- Intracratonic Williston Basin, North Dakota
- Minnelusa Fm
 - Eolian and marine sediments
 - Intermountain Powder River Basin, Wyoming

Nonmarine Formations

- Inyan Kara Fm
 - Predominantly fluvial transitioning to marginal marine sediments
 - Intracratonic Williston Basin, North Dakota

- Stuttgart Fm
 - Predominantly fluvial sediments
 - Intracratonic Northeast German Basin, Ketzin, Germany

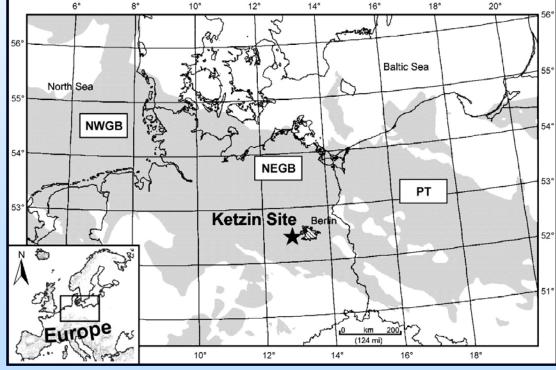
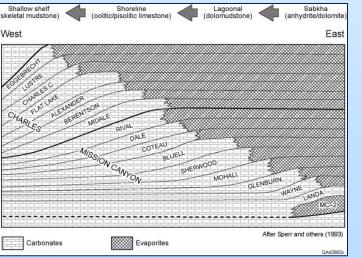


Image from Förster and others, 2010.

Nonmarine Formations

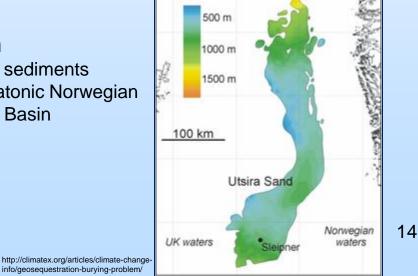
Qingshankou–Yaojia Fms


- Lacustrine with interbedded deltaic sediments
- Intermountain Songliao Basin, Heilongjiang Province, Northeast China

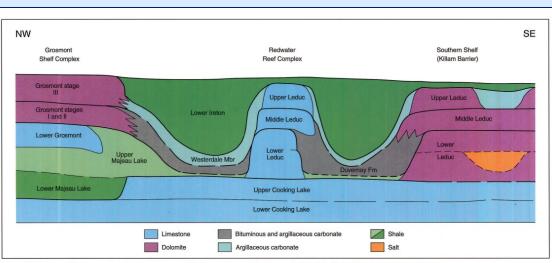
Marine Formations

Mission Canyon Fm

-Carbonate shelf sediments


-Intracratonic Williston Basin, North Dakota

Utsira Fm


- -Deltaic sediments
 - -Intracratonic Norwegian **Danish Basin**

Marine Formations

- Leduc Fm
 - Reef and shallow water carbonate sediments
 - Intracratonic regional Western Canada
 - Sedimentary Basin, west-central Alberta, Canada
- Winnipegosis Fm
 - Reef structures in marine sediments
 - Intracratonic Williston Basin, North Dakota

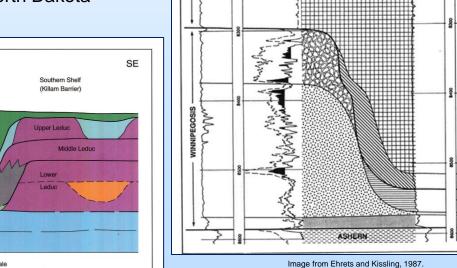
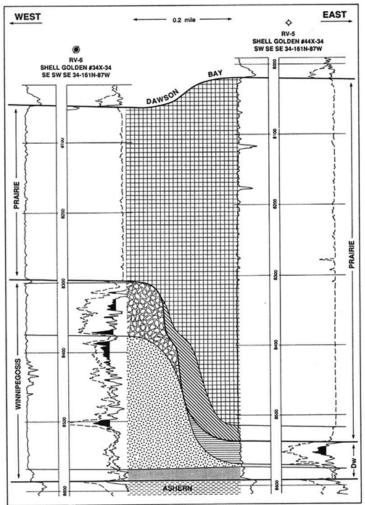
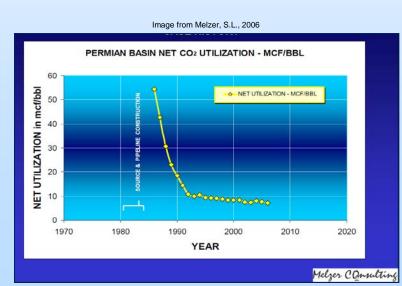
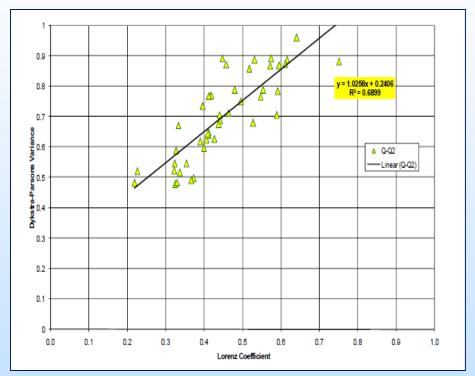



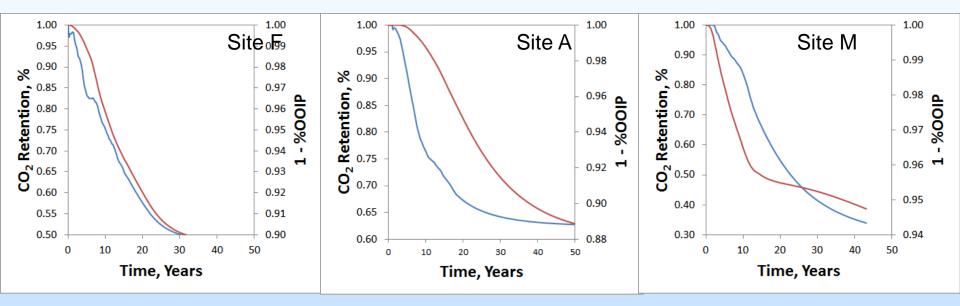
Figure 12.10 Schematic cross section showing stages of reef, shelf and basin-fill development within Woodbend intervals. See Figure 12.7 caption for explanation of the Maieau Lake-Cooking Lake relationship.


Technical Status – Task 3

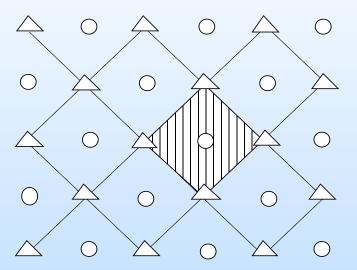

Approach

- Literature review
 - Review of existing CO₂ storage resource methodologies for hydrocarbon reservoirs
 - Collection of publicly available data: Oil and Gas Journal EOR survey, technical papers, etc.
 - Initial screening based on specific criteria (e.g., enhanced recovery)
 - Detailed analysis of selected reservoirs
- Evaluation of factors involved in the CO₂ EOR and CO₂ storage relationship
- Hydrocarbon reservoir modeling and simulation
- Evaluation of methodology

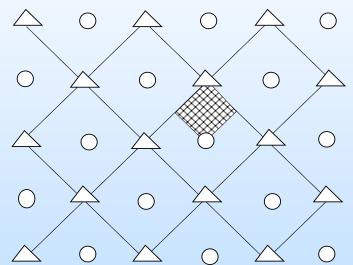
- Develop equation for CO₂ storage resource estimation.
- Perform basic 2-D spreadsheetbased evaluations.
- Compile geologic and reservoir inputs and noted inflection points to study relationship between utilization factor and project stage (CO₂ EOR and CO₂ storage).



Dykstra Parsons vs. Lorenz Coefficient Plot


Image from http://etd.lsu.edu/docs/available/etd-10302008040624/unrestricted/ Senocak_Thesis.pdf

Evaluating Relationships Between CO₂ Retention and Reservoir Production



Type 1: "Mirror" CO₂ retention and oil production track closely over time. **Type 2:** "Lag" Time lag between oil production and CO₂ retention. **Type 3:** "Crossover" Greater oil production prior to decline in CO_2 retention.

- Develop 2-D conceptual geologic models
- Perform intermediate-level reservoir simulation using COZView/COZSim or CO₂ Prophet software

The **AREA** entered as input to the model should correspond to the hatched area.

The partial area (crosshatched) is actually simulated in the model.

Images from CO₂ Prophet Manual

- Develop field- to pattern-sized geologic models. (Schlumberger's *Petrel[™]*)
- Perform dynamic simulations (using CMG's *GEMTM*) to understand and optimize:
 - Utilization factor, sweep efficiency, storage permanence, and retention

- Simulation-based estimates of expected CO₂ EOR efficiency and CO₂ storage capacity for refined storage resource estimations/storage coefficients for EOR/storage projects.
- Simulation-based analysis of potential transition of an EOR project to a CO₂ storage project and CO₂ storage resource.

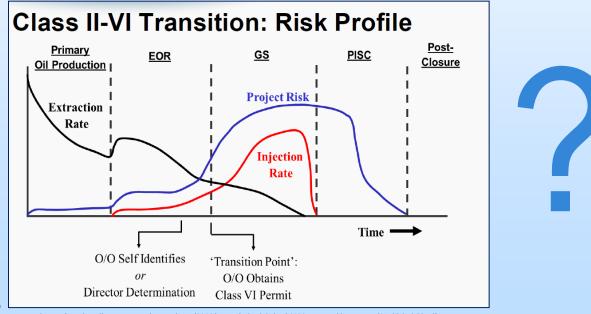


Image from http://www.spe.org/events/cmtc/2012/pages/schedule/tech%20program/documents/17_Kobelski.pdf

Accomplishments to Date

Task 2

- Literature review complete.
- Publicly available data have been collected, catalogued, and analyzed.
- Ten saline formations selected for evaluation, nine geocellular models under development.
- Dynamic simulation reservoir properties gathered.

Reservoir				
Formation	Status			
Minnelusa	Base case complete			
Broom Creek	Base case complete			
Inyan Cara	Structure model built			
Mission Canyon	Structure model started			
Leduc	Structure model built; properties compiled for object			
	modeling			
Winnipegosis	Structure model built			
Stuttgart	Structure model built; property modeling begun			
Qingshankou–	Base case complete			
Yaojia				
Utsira	Structure model started			

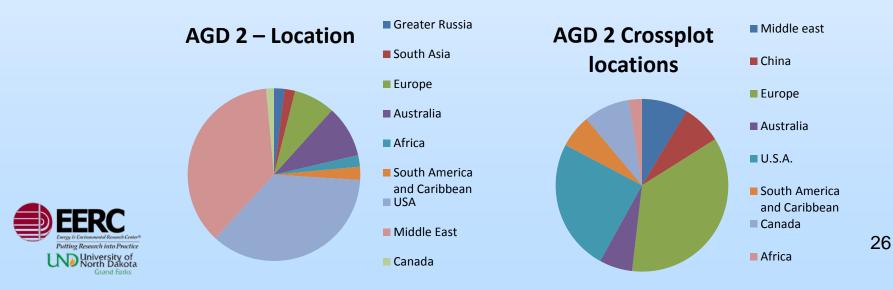
Accomplishments to Date (continued)

Task 3

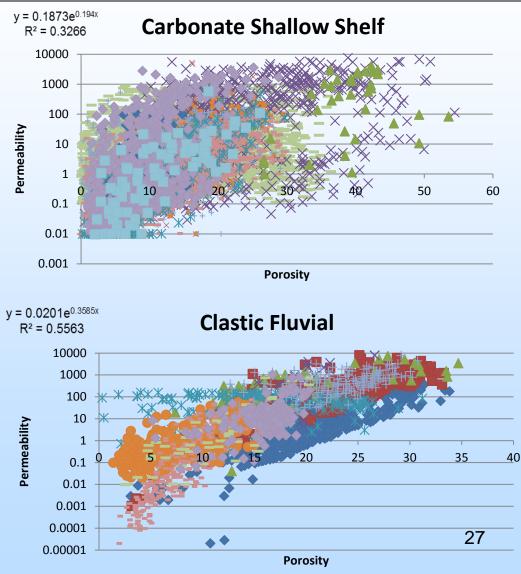
- Literature review nearly complete.
- Current oilfield CO₂ storage resource methodologies identified and under review.
- Existing EOR projects and reservoirs identified for detailed investigation.
- Potential equations for hydrocarbon reservoirs developed.

Summary

- Site- and reservoir-specific effects (e.g., pressure response) can have a significant impact on the optimization and estimation of storage resource—current methodologies typically ignore these effects.
- Dynamic CO₂ injection simulation is expected to provide insight into:
 - 1. Validity of coefficients at the formational level for different reservoir classes and basin types, thus reducing extrapolation for large-scale assessments.
 - 2. Property distributions for each lithology and depositional environment.
 - 3. Well optimization techniques for CO₂ storage (configurations, horizontal wells, etc.).
 - 4. Factors affecting CO_2 retention during EOR.
 - 5. CO₂ storage efficiency in both saline formations and hydrocarbon reservoirs.

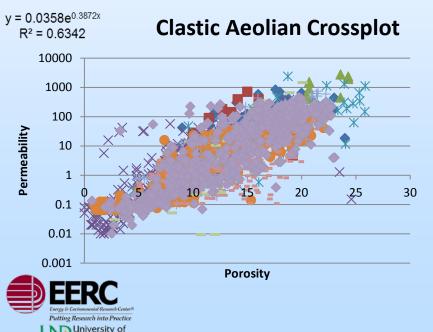


Appendix


AGD

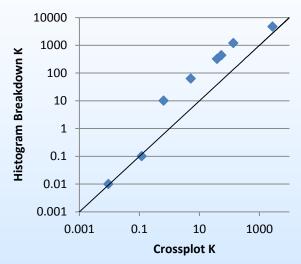
- The AGD was updated with several goals;
 - Better represent global data
 - Increase database organization
 - Incorporate porosity-permeability crossplot data
 - Be distributable
 - Rely less on American Databases
 - Lacustrine and Carbonate Slope environments were added.

AGD: Porosity-Permeability Relationships


- Nearly 26,000 points were added to the database recording referenced porositypermeability.
- Data is sorted by depositional environment and subfacies.

AGD: Findings

- Environments with tighter energy controls provide more consistent (predictable) porosity-permeability relationships.
- Crossplot data appears to produce a more representative dataset with better controls on very low and very high data (Reported histograms oversample mean data)

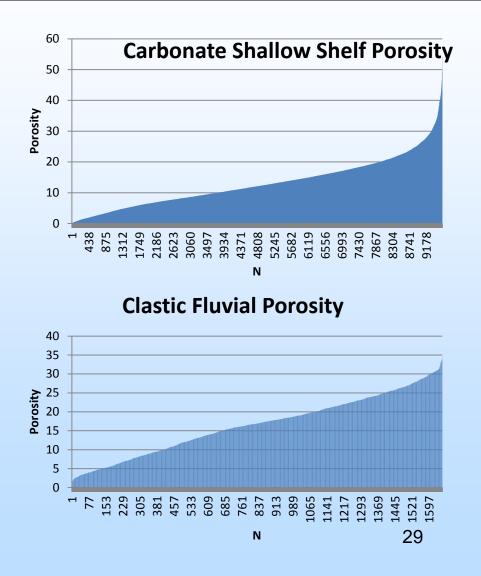


Minnelusa
 AAPG chart
 Helsby&Wimslow
 Minnelusa 2
 Unayzah
 Weber
 Sergi
 Norphlet

– Clair

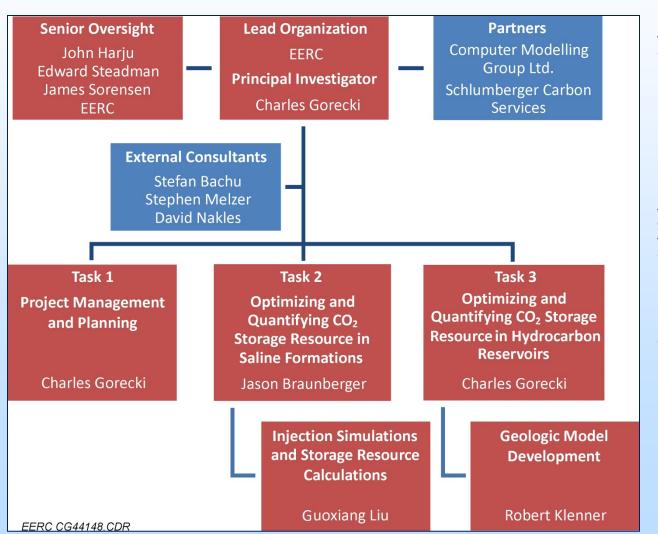
Rotliegendes

Quartile-Quartile Plot



Aeolian Permeability						
			Histogram			
		Crossplot K	Breakdown K			
N=		1503	51			
Min.		0.009251	0.01			
	0.1	0.11964	0.1			
	0.25	0.639542	10			
	0.5	5.14	63			
	0.75	38.82977	320			
	0.9	135.672	1200			
Max.		2735.775	4700			
Mean		53.66795	436.398			
Stdev		169.1931	977.8442			

28


AGD: Statistical Methods

- Depo-environment based quartile statistics for porosity and permeability were developed using two methods;
 - Using the raw porosity-permeability cross plot data
 - Using recombined histogram breakdowns

Organizational Chart

Partners

 Schlumberger and CMG provide software use and technical support.

Consultants assisting with the following:

- Task 2
 Stefan Bachu
 David Nakles
- Task 3 David Nakles Stephen Melzer

	Budget Period 1 FY 13			Budget Period 2 FY 14			Budget Period 3 FY 15							
	2012		2	013				2	014	1		2015		
	Q1	Q2	Q3	QI		01	Q2	Q3	ON C	<u>Q1</u>	Q2	Q3	40	
	Oct Nov Dec	Jan Heb Ma	r Apr May Jun	i Jul Aug	i Sep I	Oct Nov Dec	Jan leb War	Apr May Jun	Jul Aug Sep	Oct Nov Dec	: Jan Feb Ma r	Apr May Jun	Jul Aug	g Sep
Task 1 – Project Management, Planning, and Reporting														
	D1 🔻				i									
1.1 – Perform Project Management	Mi 🔶 ,	M2		-	i –			1						
					i				-				<u> </u>	DI
					į									- D9 4
		D2 🚽	D2 🚽	D2 🚽	D4	∀ 02	^{D2} ▽	^{D2} 🗸	D2 V V	, _{\\\\\} D2	D2 🛛	^{D2} [™]	D2 _▼	ъυ
1.2 – Project Reporting					Ì		V	V	V \	(V	V		V	Ť
								1						
Task 2 – Optim izing and Quantifying CO ₂ Storage														
Capacity/Resource in Saline Formations		D3			!									
	MG	., M	•											
2.1 – Literature Review					!									
2.2 – Geologic Model Development		¥	M5	<u>*</u>		M?,	>							
2.2 – Geologic Model Development			-			MB		M	D.F.					
2.3 – Simulations to Predict CO ₂ Storage Performance				*		, mo	ñ							
											M13			
2.4 – Optimize CO ₂ Storage Efficiency and Resource					1		¥				· · · · · · · · · · · · · · · · · · ·			
												M15	D7	,
2.5 – Refine Storage Resource Estimation Methodologies							¥						í í	
and Storage Coefficients					ł			1					-	
					i –									
Task 3 – Optimizing and Quantifying CO ₂ Storage Resource in Hydrocarbon Reservoirs								}						
					M6	Į								
3.1 - Literature Review						n								
									MI1	D5				
3.2 – Evaluation of CO ₂ EOR and CO ₂ Storage					i					Γľ				
					į –	L .		MIO	A	Miz				
3.3 – Hydrocarbon Reservoir Modeling and Simulation					į –]			
					İ				¥			M14	D ₿	,
3.4 – CO ₂ Storage Resource Methodologies in					į –									
					į –									
	1		:				1	1					<u>. </u>	

Summary Task	Key for Deliverables (D) 🖤	Key for Milestones (M) 🔶					
Activity Bar	D1 – Updated PMP	M1 – Updated Project Management Plan Submitted to DOE					
Completed Activity	D2 – Quarterly Progress/Milestone Report	M2 – Project Kickoff Meeting Held					
Future Activity	D3 – Identification of Geologic Formations Selected for Evaluation	M3 – First Saline Formation Selected					
Deliverable: Completed 🐺 Future 🖓	D4 – Data Submission to EDX	M4 – Saline Formations Literature Review Completed					
Milestone: Completed 🔶 🛛 Future 🚸	D5 – Interim Report: Simulation Results for CO2 Storage Performance	M5 – First Geologic Model Completed					
Critical Path Time Now	D6 – Interim Report: Balance Between CO ₂ EOR and CO ₂ Storage	M6 – CO2 EOR and Associated Storage Literature Review Completed					
	D7 – Manuscript on CO ₂ Storage Performance for Submission to Peer-Reviewed Journal	M7 – All Geologic Models Completed					
	D8 – Manuscript on the Balance Between CO ₂ EOR and CO ₂ Storage for Submission to	M8 – First Injection Simulation Completed					
	Peer-Reviewed Journal	M9 – Simulations to Predict CO ₂ Storage Performance Completed					
	D9 – Best Practices Manual on Optimizing and Quantifying CO_2 Storage Resource in	M10 – First CO ₂ EOR and Storage Simulation Completed					
	Saline Formations and Hydrocarbon Reservoirs	M11 – Reservoir Evaluations Completed					
	D10 – Final Report	M12 – Field- to Pattern-Sized Geologic Models Completed					
		M13 – Simulations to Optimize CO ₂ Storage Efficiency Completed					
		M14 – Examination and Refinement of Storage Capacity and Incremental Hydrocarbon Production Completed					
		M15 – Evaluation and Validation of Estimation Methodologies Completed					

Bibliography

No publications to date.

