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Introduction and Motivation

A primary requirement for long-term geologic storage and containment of carbon dioxide is ensuring
caprock integrity. Large-scale CO2 injection requires improved and advanced simulation tools and

risk assessment techniques to better predict and help control system failures, and to enhance

performance of geologic storage.

GeoMechanics Technologies
Is developing enhanced
simulation and risk analysis
approaches to assess and
control geomechanics-related
system failures (induced
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Benefits to the Program

The anticipated benefits to CCUS of the proposed work include:

* Providing a more expansive and detailed review and analysis of historical caprock
integrity problems and incidents encountered by the gas storage and oil & gas injection
industries. These data can be used by other researchers to inform, compare, and validate
alternative techniques for caprock integrity analysis and simulation;

+ Development and description of an improved combined transport modeling and
geomechanical simulation approach to predict and assess caprock integrity, with
documented application to a wide range of geologic settings and operating conditions,
including actual case histories;

s Development and description of a quantitative risk assessment tool to help identify and
mitigate caprock integrity problems, which is needed for the implementation of large-scale
CCUS projects.

This project addresses program goals to ensure 99% storage permanence, containment
effectiveness, and best practices for characterization and risk assessment.



r GeoMechanics
& Technologies

Workplan

The objectives of this project will be achieved through a combined research and
analysis effort that includes:

1.Review and analysis of historical caprock integrity problems of gas storage industry.

2.Development and description of improved theoretical approaches to assess caprock
integrity for a range of geologic settings;

3.Development and demonstration of advanced geomechanical simulation techniques
to predict and control (through operating practices and limits) caprock integrity
problems;

4.Development of a quantitative risk assessment tool for caprock integrity;

5.Application and demonstration of the geomechanical simulation and risk
assessment techniques to several historical caprock leakage incidents, as well as to
one or more large-scale injection projects that have not experienced problems; and,

6.Development and documentation of practical recommendations and guidelines for
caprock characterization and operating practices to reduce caprock integrity damage
risks.
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Schedule for Year 1 & Year 2

Project Plan and Schedule

Period 1 (Year 1) 2013

Period 2 (Year 2) 2014

Task Description & Milestones

2 3| 4 5] 6

7

8

9

10

11

12

Q1L |@2

Q3

Q4

Task 1. Project Mgmt & Planning

1.1 Kickoff mtgs and planning discussions

1.2 Update Mgmt plan

1.3 Project management

Task 2. Historical data review & document caprock integrity in gas storage industry

Task 3. Theoretical description & document caprock integrity issues

Go/No Go Decision Point

Task 4. Geomechanical analysis for range of geol settings for large scale CO2 sequest

Task 5. Develop & application of quantitative risk analysis tools for caprock integrity

Task 6. Review & recommend caprock integrity monitoring techniques

Task 7. Project Documentation and Reporting

7.1 Quarterly Reports

7.2 Technical workshop participation

7.3 DOE meeting and presentations

7.4 Final report

Project Staff Members
NAME TITLE
Mike Bruno Principal Investigator
Kang Lao Project Manager
Jean Young Sr Geologist
Bill Childers Staff Geologist
Nicky White Staff Geologist
Julia Diessl Sr Research Engineer
Claudia Gruber Sr Research Engineer
Jing Xiang Research Engineer
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Historical Data Review in Gas Storage Industry

U.S. Natural Gas Storage Facilities as of August 2007

IEAGHG (2009)
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Overview of Underground Gas Storage:

» Underground Fuel Storage (UFS) began
in 1915
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389 North American UGS Facilities in Depleted O&G Fields and Aquifers
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Scatterplot comparing working gas to total gas capacity for North
American UGS facilities in depleted O&G fields and aquifers
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U.S. UGS Leakaqe Events: Modified from Evans (2009) N
» ~373 US UNGS facilities
Contributory Storage Facility Type operational and abandoned in
processes/mechanisms 0%G . O&G fields and aquifers
attributed to leakage/failure Fields | A9Ufers| Totals

» 28 of these reservoirs have
11 13 24 experienced leak incidents

» 28/373 = 7.5% incident rate

=
o
=

European UGS Leakage Events:

Evans (2009)
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Some Key Points to Consider

1. Reported and documented incidents are not comprehensive. Most
leakage incidents are not documented. During the past five years
GeoMechanics has been involved in half a dozen legal disputes involving

storage gas migration which are not documented or mentioned in literature.

2. The natural gas storage industry has a strong economic incentive not to
lose gas. Yet it does not achieve 99% containment over decades.

3. 99% containment over 100 years is a goal, not a likely outcome.

Leakage out of zone generally does not result in leakage to surface.
Overburden characterization is a key component of risk assessment.

Risk Cost = Probability x Consequences

Finally: Yesterday’s Caprock is Today’s Shale Gas Play

What about tomorrow ?
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Geomechanical Processes Associated with Geologic Sequestration of CO,
Rutqvist (2012)
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Analytical Equations for

Induced Shear Stresses

The volumetric strain of a reservoir element, AV/V, depend on the change in pore pressure times the
reservoir material compressibility, Cb.

AVIV = CbAP + 3aAT
Total induced shear stresses caused by a varying pressure within an arbitrarily shaped reservoir can be

obtained by integrating the contribution of all these expansion points over the reservoir volume, V as
follows:
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The expression t.. and T are the horizontal shear stresses at position (xo, Yo, zo). Eo Is the Young's
Modulus for the overburden material and v is the Poisson’s ratio. V1 and V2 are distance functions given
by:
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(Left) 3D geomechanical model used to study induced shear stress in caprock; (Right) Section view through center of model.
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Induced shear stress in the caprock with (a) 200m, (b) 200m, and (c) 300m reservoir thickness
while changing reservoir radius from 500m to 2000m under linear pressure change.
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Analytical and Numerical Analyses Proceeding For:

1. Louden Field
2. Wilmington Graben CO2 Site
3. Kevin Dome COZ2 Site

Includes:

« 3D Geology Model

* 3D Fluid Flow Simulation
 Geomechanical Simulation
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Modified from NETL, 2010
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Map showing all 7 RCSP development-phase projects. Selected projects for this
study (highlighted in gray) include the Wilmington Graben Characterization Project
and Kevin Dome CO2 Injection Projects.
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3D Fluid Flow and GeoMechanical Models for Caprock Integrity
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(Left) Map of Wilmington Graben
Characterization Project located offshore near
Long Beach, California. (Top Right) Fluid
Flow Model with Tough2 Code. (DOE Project
number: FE0001922)
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Geologic Model of Wilmington-Graben

Lithology

|:| Sand

(Top Left) Lithology Model with cut-
away view . (Bottom Right) Fence-
Diagram.
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' ._ﬁ*regg % ﬂfgtlon and Migration Modeling at Wilmington-Graben
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W s acuea@ranical Model for B-B’ Section at Wilmington-Graben

Develop Geomechanical Model to
Assess:

1. Caprock Integrity
2. Induced deformations & stresses

3. Fault activation risks
Injection Well

A

miles

san-pedro
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repetto
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schist (N E) B )
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3D Fluid Flow and GeoMechanical Model for Kevin Dome
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Propased Injection Well

(Top Left) Blue box marks perimeter of the geologic
model boundary. Black box indicates location of the
10km by 10km Tough2 model boundary; (Top Right)
Geologic model; (Bottom Right) Tough2 model.

! (442500m, 5407500m,-511m)
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Risk Cost = Probability of Event x Economic Consequence

Quantitative Risk Analysis Methodoloqy

Estimate Likelihood of Loss Events;
Evaluate Consequences; and
Compare Risk Cost to Benefits.
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Factors Decreasing Risk:
Caprock Thickness

Collector Zones Above Caprock
Multiple Seals and Sinks
Increasing Depth

Offshore

Factors Increasing Risk:
Areal Extent

Pressure and Thickness
Higher Number of Wells
Well Damage History
Population

Onshore

Tectonic Setting




W ceoMechanics
& Technologies

Determine caprock and reservoir o T MNo o T
mechanical properties ——'b-::___________Core available ?__________:.--—b-::.__________ Logs available ? . i
Yes
Yes
Measure stiffness and
sirength properties
Estimate stiffness and
strength properties
_____/------------_“"“hu..._____ -’__,-"’- H-H-'“‘--..L_ _’_.—-"-FH'“‘--.H___H_ No
Determin_e in-situ stresses and ___»_, Hyd. Fracture data "--::_ No > — Quality leak-off -'“"“:Jﬂ—bg -Ereakoummage 'H-.H_:}

- -
reservoir fracture pressures ~—— avmlable 7 xnata a\.ranal:le? — ~data a\rallahle 9 _—

Yes
- ~
Evaluate min and max horiz
. stress
L ) | v
< r Constrain stress tensor
-« Constrain stress tensor

.

4 [ Estimate from regional stress data
| and lithology/depth <

¥

Evaluate fracture pressure variations
with position and with reservoir pressure

!

Evaluate caprock stresses induced by
pressure cycling

Example of step-by-step process to evaluate_geomechanical limits for caprock integrity induced by large
scale CO2 injection.
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3.0 Reservoir Properties

Largest Lateral Dimension (m) 3500

Reservoir Thickness (m) 140

Caprock Thickness (m) 383

Collector Zone: >10zones

Multiple collector zones 1 1 1 1 1 1 1 1 1
One collector 0 10 0 10 0 10 0 10 0
No collector zones 0 100 0 100 0 100 0 100 0
Fault Boundaries

None 1 1 1 1 1 1 1 1 1
One 0 1 0 10 0 10 0 10 0
More than one 0 1 0 100 0 100 0 100 0
Caprock Seal 383

Thickness >=30m 1 1 1 1 1 1 1 1 1
3m < Thickness <30m 0 10 0 10 0 10 0 1 0
Thickness <=3m 0 100 0 100 0 100 0 1 0
Caprock Strength

Strong 0 1 0 1 0 1 0 1 0
Moderate 1 1 1 10 10 1 1 10 10
Weak 0 0 100 0 0 100 0
Reservoir Homogeneity

Low 0 1 0 1 0 1 0 1 0
Moderate 1 10 10 10 10 10 10 1 1
Significant 0 100 0 100 0 100 0 1 0
Ratio Reservoir Lateral

Dimension/Formation Depth 2.02

Less than orequal to 1 0 1 0 1 0 0 1 0
Between 1and 10 1 10 10 10 10 1 10 10
Greater than or equal to 10 0 100 0 100 0 0 100 0
Ratio Reservoir Thick/Depth 0.08

Less than or equal to 0.1 1 1 1 1 1 1 1 1 1
Between 0.1to 0.5 0 10 0 10 0 1 0 10 0
Greater than or equal to 0.5 0 100 0 100 0 1 0 100 0
CATEGORY SCORE | 100| 25 34| 16 25
TOTAL SCORE [ 23]
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Sample Risk Assessment Tool

2.0 State of Stress

Minimum Stress Known? (1=yes, 1
0=no)
Minimum in-situ Stress 2000
Desired Max Pressure/ Min Stress 0.7
Less than or equal to 0.5 0 1 0 1 0 1 0 1 0
Between 0.5 and 0.75 inclusive 1 10 10 10 10 10 10 10 10
Greater than 0.75 or unknown 0 100 0 100 0 100 0 100 0
Regional Stress Conditions:
Normal stress orientation 0 1 0 1 0 1 0 1 0
Strike-slip stress orientation 1 10 10 10 10 10 10 10 10
Thrust-fault orientation 0 100 0 100 0 100 0 100 0
Local Seismic History
Low activity 1 1 1 1 1 1 1 1 1
Moderate activity 0 10 0 10 0 10 0 10 0
High activity 0 100 0 100 0 100 0 100! 0
CATEGORY SCORE 84 21 21 21 21
3.0 Reservoir Properties
Largest Lateral Dimension, LD, ft 15000
Reservoir Thickness, ft 10
Caprock Thickness, ft 15
Collector Zone:
Multiple collector zones 0 1 0 1 0 1 0 1 0
One collector 0 10 0 10 0 10 0 10 0
No collector zones 1 100 100 100 100 100 100 100! 100
Fault Boundaries
None 1 1 1 1 1 1 1 1 1
One 0 1 0 10 0 10 0 10: 0
More than one 0 1 0 100 0 100 0 100! 0
Caprock Seal
Thickness >= 100 ft 0 1 0 1 0 1 0 1 0
10 < Thickness < 100 ft 1 10 10 10 10 10 10 1 1
Thickness < = 10 ft 0 100 0 100 0 100 0 1 0
Caprock Strength
Strong 0 1 0 1 0 1 0 1 0
Moderate 1 1 1 10 10 1 1 10! 10
Weak 0 1 0 100 0 1 0 100! 0
Reservoir Homogeneity
Low 0 1 0 1 0 1 0 1 0
Moderate 1 10 10 10 10 10 10 1 1
Significant 0 100 0 100 0 100 0 1 0
Ratio Reservoir Lateral Dimension / 6.00
Formation Depth
Less than or equal to 1 0 1 0 1 0 1 0 1 0
Between 1 and 10 1 10 10 10 10 1 1 10 10
Greater than or equal to10 0 100 0 100 00 1 0 100! 0
Ratio Reservoir Thick / Depth 0.004
Less than or equal to 0.1 1 1 1 1 1 1 1 1 1
Between 0.1 and 0.5 0 10 0 10 0 1 0 10 0
Greater than or equal to 0.5 0 100 0 100 0 1 0 100! 0
CATEGORY SCORE 514 133 133 124 124
TOTAL SCORE 1204 256 265 346 346

from Bruno et al, 2000 Loss Cost of Loss Risk

Category Event, $ Costs, $
Inventory I §75.000] [ 875]
Gas Sales I 4.375,000] I Z.375]
Asset Value I 350,000] 350
Fracture [ToE03] Repair I 5.000,000] I 5,000]
Legal I 500,000] I 500]
Regulatory m 250
Other I 1,000,000] I ]
Inventory I 875,000] I 875]
Gas Sales | 4,375,000] 1 4,375'
Asset Vglue m 350
Faulting [ToE03] Repair I 5.000,000] I 5.000]
Legal I '500,000] I 500]
Regulamry m 250
Other 1 1,000,000] 1 H |
Inventory | | 875,000] [ | 8,750]
Gas Sales 1 o] 1 H |
Asset Value | of 1 -]

Pressurize

Reservoir__JPermeation & Spillover [ToE02] Repair | | 5,000,000] [ | 50,000]
|Legal I 500,000] I 5.000]
Regulaton [ 250000 7509
Other 1 1,000,000} 1 h |
Gas Sales 1 o] 1 B |
Asset Value | | 9 | [ | -1
Mechanical Loss Event IT—OZI Repair | 5,000,0000 1 50,000)
Legal I 500,000] I 5.000]
Regulator m |—2,500|
other 1 1,000,000} 1 B |

No Loss

I 9.8E-01 I

————

lllustrative Examples of Likelihood Evaluation and Risk Assessment 37
Tool for Caprock Integrity.
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Project Status and Accomplishments to Date (9 months):

— Completed Historical Data Review & Documentation of Caprock
Integrity in both U.S. and European Gas Storage Industry

— Completed analytical description and comparison numerical
simulations describing caprock stresses induced by CO2
Injection

— Assembled 3D Geologic Models, Fluid Flow Models, and
Geomechanical models for three sample fields (Wilmington-
Graben, Kevin Dome, Louden).
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— These slides will not be discussed during the
presentation, but are mandatory
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ID  |Task Name 4th Quarter | 1st Quarter | 2nd Quarter | 3rd Quarter | 4th Quarter

or12 0 [ 11 T271 [113 213313413501 36 3[73jeA3[er3] 04 [0 12 1144 2014 --lﬂﬂ

1 |Task 1:Project Mgmt & Plan

2 1.1 Kick off Meeting & Planning Discussions YN ST — FOTIIR DR OO — SRR SRNRRTI — SRR ST

3 1.2 Update Mgmt Pian [ S
3 1.3 Proj Management _ i
5 |Task 2:Hist Data Review & Document Caprock Integrity in Gas Storage Industry —
& |Task 3:Theoretical Description & Document Caprock Integrity Issues ﬁ
7 |GO/MNO GO DECISION PQINT :
8  |Task 4:Geomech Analysis for Range of Geol Settings for CO2 Sequestration [———— MO
9 |Task 5:Develop & App of Quantitative Risk Analysis Tools
10 |Task 6:Review & Recommend Caprock Integrity Monitoring Techniques I
11 |Task 7:Proj Document and Report ! H ’
12 7.1 Quaterly Report - = = = = = =
20 7.2 Technical Workshop Participation =...............5...................... g —
2 7.3 DOE Meeting and Presentations E.................................é...................... e —
g7 7.4 Final Report =
Task | — Milestone @ External Tasks [ —
Project: CO2 Caprock Split S SUMMary === External Milestone ¢

Date: Wed 87113
Progress e Project Summary ————)  Deadline S

Page 1
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