Chemical Fixation of CO₂ to Acrylates Using Low-Valent Molybdenum Sources

DE-FE0004498

Prof. Wesley H. Bernskoetter Brown University

In cooperation with Charles Stark Draper Labs

U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013

• Deriving acrylates from CO₂: How and why

- Assessing viability of chemical catalysis approach.
- Method for enhanced throughput catalyst screening
- Perspectives for the future.

 This project pinpoints the critical catalyst features necessary to promote carbon dioxide conversion to acrylate, validate the chemical catalysis approach, and develop an enhanced screening method identification of active molybdenum catalysts targets. This methodology will contribute to the goal ensuring 99 percent storage permanence by fixing CO_2 in stable products for indirect storage.

Project Overview: Goals and Objectives

- Identify features for activation of molybdenum in CO₂ and ethylene coupling to acrylates.
 - Probe mechanism of zerovalent molybdenum complexes to determine the factors that control the reaction rate. (Complete)
- Validate reductive acrylate elimination
 - Use active species to assay the potential for reductive acrylate extrusion. (Complete)
- Develop and utilize an enhanced screening method for activity identification in acrylate formation.

Guiding Motivations

Guiding Motivations

- Currently produce ~5 M tons of acrylic acid/yr (SAP largest single use)
- Using CO₂ as carbon source with same net carbon requirements of the current process would equate to 3-8 M tons of CO₂ (up to 1 billion gal of gasoline)
- Economic Value and Industrial Investment: Propylene (~70 ct/lb); Ethylene(~ 55ct/b)

Which Metals Could Work?

Prior Art-Molybdenum (NETL-Project)

 $P = PMe_3, PMe_2Ph,$ $P(OMe)_3, P(OEt)_3$

Carmona, E.; *et al. J. Am. Chem. Soc.* **1985**, *107*, 5529. Galindo, A.; Pastor, A.; Pérez, P.J.; Carmona, E. *Organometallics* **1993**, *12*, 4443. Collazo, C.; Conejo, M.; Pastor, A.; Galindo, G. *Inorg. Chim. Acta* **1998**, *272*, 125.

Prior Art-Nickel

Hoberg, H.; Schaefer, D. J. Organomet. Chem. **1983**, 251, C51. Limbach, M. et al Chem. Eur. J. **2012**, 18, 14017; Limbach, M. U.S. Patent Application 13/040,043 Sep. 8 ,2011 Jin, D.; Bernskoetter, W. H. et al. Organometallics. **2013**, 2152.

Molybdenum

- Molybdenum is quite capable of reactions 1, 2 & 3 individually
- Little is known about what makes molybdenum the "rare" success
- Identification of successful singlesite molybdenum activity requires intensive fine chemistry assay

Molybdenum

First New CO₂-Ethylene Acrylate in Decades

Bernskoetter, W.H.; Tyler, B. T. Organometallics 2011, 30, 520.

- Molybdenum is quite capable of reactions 1, 2 & 3 individually
- Little is known about what makes molybdenum the "rare" success
- Identification of successful singlesite molybdenum activity require intensive fine chemistry assay

Mechanism of Action

Mechanism of Action

Computational Modeling

Free Energies of Reaction Species

Direct Elimination

Direct Elimination

...but pKa ~30-35

Indirect Elimination-Base

- Presence of carbon monoxide actually enables this process, not inhibit it
- Metal-carbonyls are frequently activated by photolysis for catalysis
- Probably the best lead for molybdenum induced acrylate formation

• Formate, propionate, and acrylate produced from single reaction

Enhanced Activity Screening Method

• Formate, propionate, and acrylate produced from single reaction

17

Zhang, Y., Bernskoetter et al Organometallics 2013, 32, 3969.

Formate, propionate, and acrylate produced from single reaction

Activity Results—8 New Active Catalyst Targets

Ligand	Observation	Rate					
[bis(diphenylphosphino)ethyl- phenylphosphine]	Clear acrylate production detected	5.2 x 10 ⁻⁵ s ⁻¹					
[bis(dianisolephosphino)ethyl- phenylphosphine]	Clear acrylate production detected:	2.54 x 10 ⁻⁵ s ⁻¹					
[bis(di-m-xylyl-phosphino)ethyl- phenylphosphine]	Clear acrylate production detected	4.15 x 10 ⁻⁵ s ⁻¹					
[bis(di-p-fluorophenyl-phosphino)ethyl- phenylphosphine]	Clear acrylate production detected:	3.2 x 10 ⁻⁵ s ⁻¹					
[bis(di-p-trifluoroemethyl-phenyl- phosphino)ethyl-phenylphosphine]	Clear acrylate production detected:	4.05 x 10 ⁻⁴ s ⁻¹					
[bis(dipyrrolephosphino)ethyl- phenylphosphine]	No acrylate formation detected						
1,1,1- Tris(diphenylphosphinomethyl)ethane	No acrylate formation detected						
Methyl substited 1,4,7-Triazacyclononane	No acrylate formation detected						
[bis(di-tertbutyl-phosphino)ethyl- phenylphosphine]	Preliminary data suggest acrylate formation, additional characterization on-going	TBD					
[bis(dicyclohexylphosphino)ethyl- phenylphosphine]	Preliminary data suggest acrylate formation, additional characterization on-going	TBD					
N,N'-(2,4,6-Trimethyl)-oimidazolium	Preliminary data suggest acrylate formation, additional characterization on-going	TBD					
N,N'-(2,6-Diisopropylphenyl-imidazolium	Preliminary data suggest acrylate formation, additional characterization on-going	TBD					
N-Methyl-triazacyclononane	No acrylate formation detected						
1,3-Bis(di-tert- butylphosphinomethyl)benzene	No acrylate formation detected						
N,N'-Dimethyl-imidazolium	No acrylate formation detected						

20

Accomplishments to Date

- Discovery of rare metal complex for of CO₂ and ethylene coupling to acrylates.
- Identified the tridentate structural features that best enable CO₂ utilization.
- Developed a basic profile for CO₂ reduction pathway.
- Discovery of base and ligand induced reductive elimination pathways for acrylate removal
- Established an enhanced throughput screening method using sodium triethylborohydride for assessment of acrylate formation activity in molybdenum

Future Plans

- Identify activation methods for CO or other ligand induced reductive elimination method.
- Complete screening of metal ligand pairs to optimize acrylate formation rate.

(Mo Targets Outside Current NETL Project)

- Heterogenize Mo catalyst as Nanoparticles
- Alternate Product Scope
 - Formic acid, propionic acid
 - Cyclic anhydrides

Appendix

Organization Chart

This program is run under the auspices of Wesley Bernskoetter, Assistant Professor of Chemistry at Brown University as the principle investigator. Dr. Bernskoetter and his graduate students are part of the chemistry department, and as such, have access to the facilities of Brown and its chemistry department. In addition to the Brown, the project team has access to computational chemistry support and additional chemical and engineering support, as required, through its collaboration with Draper Laboratory. 24

Gantt Chart

ID	WBS	Task Name	Start	edeces so	Octob	or	Nover	nhor	Decem	hor	lanuar	v	Februa	n/	March		Anril		May		une		lubz		August	Senter	nher	Octo
					B	ME	B	ME	B	VEI VIE	B	y M E	B	N E	B M	E	B N	M E	B M	E	B M	E	B M	E	B M	E B /	ME	B
1	1	Task 1 - Program Management and Planing	Mon 10/1/12	_							<u> </u>					_	—			-		->					<u> </u>	<u>, </u>
2	1.1	Finalize PM P	Wed 10/31/12				oli 10/31	1																				
3	1.2	Internal Kickoff	Fri 10/12/12		•	10/12	1																					
4	1.3	External Kickoff	Wed 10/31/12				💧 10/3 [.]	1																				
5	1.4	RiskM onitoring IAW PM P	Mon 10/1/12		5		1																					
6	1.5	Quarterly Technical Reviews	Mon 12/31/12							<	5					<	5					0						
10	1.6	Internal Program Review and Task Reassignment	Mon 9/30/13																			Ň						9/3
11	1.7	Program Closeout Meeting	Mon 9/30/13																								1	9/3
12	-																											ĺ
13	2	Task 2 - Prepare Molybden um Target Complexes	Mon 10/1/12																									
14	21	Prepare and characterize tridentate Mo Complexes	Mon 10/1/12		_	-																						
15	22	Report/presentation of tridentate Complexes	Thu 10/25/12	14			a 10/3	31																				
16	23	Computational analysis of current Moltargets	Mon 10/1/12		-		Ť																					
17	24	Prevare and characterize tetradentate Mo complexes	Mon 10/29/12	16		~																						
18	25	Report/Presentation on tetradentate complexes	Fri 1/18/13	17	-		-				1		1/24															
19					-							•																
20	3	Task 3- Analysis of Acrylate formation	Eri 1/18/13											_														
21	31	Couple Mo Complexes to CO2 and C2H 4	Eri 1/18/13	14 17	-							*																
22	32	Measure Kinefics and derive Mechanism	Eri 2/1/13	21	-								<u>ک</u>															
22	33	Perform Computational valuation of reaction mechanisms	Fri 1/18/13	1/ 17	-							+		•														
20	34	Penort/ Presentation of Mechanistic Valuations	Eri 2/22/13	23									1	-7	2/28													
25			11122210												1]											
26	4	Task 4 - Factors for Acrylic Elimination	F ri 1/18/13																									
27	4.1	Conduct direct Acrylic Elimination Reactions	Fri 1/18/13	14.17								*	L				Ť											
	42	Conduct Microscoric Reversability Assavs	Eri 2/15/13	27	-								1	<u> </u>														
29	4.3	Computational Analysis of Elimination reactions	Eri 1/18/13	14.17								*			<u>ا</u>		Í											
30	44	Report/Presentation of Acrylic Elimination	Thu 3/28/13	28.29									1			- · ·	4/3											
31				,													T											
32	5	Task 5 - Desing, Preparation, and Assessment of Optimal Catalyst	Thu 4/4/13																									
33	51	Plan Synthesis of Optimal Catalyst	Thu 4/4/13	24.30													Ť+										•	
34	52	Execute synthetic plan	Thu 5/2/13	33													-											
35	53	Conduct thermodynamic and Kinetic assessments	Thu 5/23/13	-15 days	-													(<u> </u>	-	
36	5.4	Report/Present on optimal Catalyst	Fri 9/13/13	35																		1				_	📩 9/1	9
37	-				-																							
38	6	Task 6 - Alternative Reductive Preparation of Tridentate Mo	Fri 3/1/13		-																							
39	61	Computational Analysis of Reducing Agents	Eri 3/1/13	24											+						<u> </u>							
40	62	Synthesize Targets with Alternative Reducing Agents	Eri 3/15/13	-10 days	-									1	- M			1		-	-	_						
41	63	Cenerate Mo Complexes and and perform a plate formation	Eri 3/20/13	10 days	-											1						-						
42		concrete wo comprotes and and perform any rate formation	110/28/10	io cays	-										_			1				1		i				
43	7	Task 7- Screening Aproach to CO2-Ethylene Coupling Activity	Eri 7/26/13		-																			╷╢				
44	71	Computational Modelling of the Thermodynamics of Pedintion and an	VEri 7/26/13	18 / 1	-																			- ¥				
45	72	Didentifyand Develop Experimental Techniques to identify acrulate For	n Eri 7/26/13	41	-																			- 7				
46	73	Conduct Batch tests	Eri 8/23/13	/5																				-				
40	7.0	Drenare/Denort on Minimum	Fri 0/20/13	40																							₹,	9/26
47	1.4	rigatericeportorimo reauction	1119/20/13	40	1															1								

Bibliography

Peer Reviewed Publications

- Bernskoetter, W.H.; Tyler, B.T. 2011, Kinetics and Mechanism of Molybdenum Mediated Acrylate Formation from Carbon Dioxide and Ethylene: *Organometallics*, v. 30, p. 520-527, available at: DOI: 10.1021/om100891m.
- Wolfe, J.M.; Bernskoetter, W.H. 2012, Reductive Functionalization of Carbon Dioxide to Methyl Acrylate at Zerovalent Tungsten: *Dalton Transactions*, v. 41, p. 10763-10768, available at: DOI:10.1039/C2DT31032E.
- Zhang, Y.; Hanna, B. S.; Dineen, A.; Williard, P. G.; Bernskoetter, W. H. 2013, Functionalization of Carbon Dioxide with Ethylene at Molybdenum Hydride Complexes. *Organometallics*, v 32, p. 3969-3979 DOI: 10.1021/om400448m