

Overview and Baseline Assumptions for the FE/NETL CO₂ Saline Storage Cost Model

David Morgan NETL, Office of Program Performance and Benefits August 20, 2013

FE/NETL CO₂ Saline Storage Cost Model

• What is it?

- Spreadsheet-based discounted cash flow model for a saline storage site
- Uses simplified reservoir engineering equations to "simulate" saline storage
- Includes cost of complying with EPA's Class VI well and Subpart RR regulations for saline storage sites
- Includes cost of complying with financial responsibility requirements of Class VI well regulations
- Calculates NPV to owners given a first-year price for storing CO₂ or calculates break-even cost (price) for storing CO₂ at specific site
- Using database of 218 potential storage formations in lower 48 states, generates cost supply curve for saline storage

FE/NETL CO₂ Saline Storage Cost Model

• How is it used?

- How much CO_2 can be stored at what price?
- How do storage costs vary geographically?
- What are the main cost drivers for CO₂ storage? What is NOT important?
- How could changes in policy/regulation affect storage costs?
 - Upcoming 18-month review of Class IV UIC rules

Model Framework Based on Project Phases

Regional Eval.	Site Selection & Char.	Permitting & Inj. Well Drilling	Operations	Post-Injection Monitoring	Long-Term Stewardship
	UIC Class VI Regulations			Developing State	
		Class VI Permit		Permit	Regulations
0.5 to 1 year	3+ years	2+ years	30 to 50 years	10 to 50+ years	rest of civilization
gather existing data, develop several prospects	select a site, acquire new data (drill wells, shoot seismic), prepare permitting plans	permit awarded to drill injection wells, final approval to begin injection.	inject CO ₂ , drill monitoring wells & remediate existing wells as needed, MVA	monitor site, establish non- endangerment, close and restore site	another entity (e.g., a state) takes over
assemble (surface access/ per to	assemble acreage block Irface access/pore space; \$50/acre + per tonne royalty) Secure financial responsibility upon permit application; as required, pay into trust fund for financial responsibility				
	25% success rate assumed		pay \$/tonne fees*		
negative cash flow		positive cash flow	negative cash flow	covered by fee paid during ops	
* Default assumptions are \$0.07/tonne for long-term stewardship, \$0.75/tonne for insurance to cover emergency & remedial response during injection/PISC, and \$0.05/tonne "royalty" to pore space owner.					

Calculation of CO₂ Plume Areal Extent, Inj. Wells

Important Areal Quantities

Financial Responsibility

- Must be demonstrated for Class VI permit
- Value of selected financial instrument(s) must cover:
 - Corrective action
 - As needed during injection and PISC phases
 - e.g., plugging existing wells
 - Plugging injection wells
 - Post-injection site care and closure
 - ALL expenses during PISC (e.g., operating monitoring wells, seismic, sampling, plugging monitoring wells, site closure)
 - Cost of financial responsibility very sensitive to duration of PISC
 - Emergency and remedial response
 - Covered separately by insurance

Financial Responsibility

• Six financial instruments recognized by EPA

1. Self insurance

- "I'm good for it", owner pays costs as they are incurred
- Owner's tangible net worth must be at least 6x estimated total project costs

2. Trust fund

- Actively managed fund that provides return
- Possible 3-year pay-in period with first payment before injection begins

3. Escrow account

• Lower return than trust fund; same pay-in schedule

4. Insurance

• Owner pays fee for coverage (up front and/or annually)

options currently available in model

- 5. Letter of credit
 - Owner pays for access to line of credit (up front and/or annually)
- 6. Surety bond
 - Owner pays premiums for bonding company's promise to pay any costs not paid by owner
- Other: EPA open to suggestions
 - Modified trust fund (option in model); pay-in period congruent with operations
- Note: Trust Fund and Escrow Account effectively move late occurring costs (injection well plugging and PISC) much earlier in the project

Baseline Assumptions and Uncertainty

- Baseline Assumptions are point estimates for variables that can encompass significant uncertainty
- How EPA will implement the Class VI well regulations and Subpart RR regulations may represent the greatest source of uncertainty
 - EPA is intentionally imprecise in their requirements
 - Many assumptions used in Baseline Case are inferred from assumptions used by EPA in their cost analysis of the Class VI regulations
 - More stringent assumptions would increase costs, less stringent assumptions would decrease costs
 - Financial Responsibility requirements can potentially contribute significantly to cost, but it is uncertain how EPA will allow operators to meet these requirements
- Another significant source of uncertainty is the location of CO₂ plume
 - Geology (stratigraphy, depositional history, faults and fractures)
 - Geologic properties (porosity, permeability, thickness)
 - Storage coefficients
 - Applicability of storage coefficients for multiple injection wells

Duration of Stage	Value	Basis
Regional evaluation and site selection	1 year	Professional judgment
Site characterization	3 years	EPA CA and professional judgment
Permitting (install injection wells)	2 years	EPA CA and professional judgment
Operations (inject CO ₂)	30 years	Assumption, matches NETL power plant baseline studies
Post injection site care (PISC) and site closure	50 years	Default value in EPA Class VI regulations
Long-term stewardship	Indefinite future	

EPA CA refers to cost analysis EPA performed for the regulations governing Class VI CO₂ injection wells

Item	Value	Basis
CO ₂ injected	3.2 Mtonne/yr	NETL power plant baseline studies
Storage coefficients	Site-specific coefficients	IEAGHG (2009) report
Fraction of structure: Dome Anticline Regional dip	1.25% 1.25% 97.5%	Based on USGS report that identified 2.5% of Tensleep formation had structural closure
Usable fraction of structure Dome Anticline Regional dip	80% 80% 40%	Professional judgment; These numbers reflect institutional constraints and pressure interference between injection projects
CO ₂ Plume Uncertainty Area Multiplier	1.75	Professional judgment
CO ₂ Pressure Front Multiplier	10.0	Discussions with practitioners
Sites pre-characterized	4	EPA CA, professional judgment

Item	Value	Basis
Deep monitoring wells above seal in CO ₂ Plume Uncertainty Area	1 well/2 mi2	EPA CA
Deep monitoring wells above seal in CO ₂ Pressure Front Area	1 well/50 mi2	Professional judgment
Deep monitoring wells in reservoir in CO ₂ Plume Uncertainty Area	1 well/4 mi2	EPA CA
Deep monitoring wells in reservoir in CO ₂ Pressure Front Area	1 well/50 mi2	Professional judgment
Groundwater wells and vadose zone wells	1 well/injection well	Professional judgment
Aqueous sampling frequency - Deep monitoring wells - GW & vad. zone wells	Annually Quarterly	Professional judgment Professional judgment

Item	Value	Basis
Cost of plume monitoring with geophy. tech. (e.g., 3D seismic)	\$160,000/mi2	Mid-range value for high res. 1 component 3D seismic
Frequency of plume monit. w/ geophy. tech. during ops. & PISC	Once every 5 years	EPA CA
Cost of near surface and above surface gaseous CO ₂ monitoring (Eddy cov., flux chmb., vad. z. wells)	\$670,000 \$60,000/yr	Capital cost (EPA CA) Annual cost (EPA CA)

Item	Value	Basis
Percent equity	55%	Perf. Div. Baseline Stud.
Interest on debt	5.5%	Perf. Div. Baseline Stud.
Internal rate of return	12%	Perf. Div. Baseline Stud. High risk IOU
Escalation rate	3%	Perf. Div. Baseline Stud.
Tax rate	38%	Perf. Div. Baseline Stud.
Financial responsibility -Modified Trust Fund for corr. action, inj. well plugging, PISC (interest rate) -Insurance for Emerg. & Rem. Resp. (ERR)	5%/yr \$0.75/tonne	Net rate of return after taxes & admin. fees Professional judgment
Lease bonus	\$50/acre	EPA CA
Pore space fee	\$0.25/tonne	Professional judgment
Long-term stewardship fund	\$0.07/tonne	Professional judgment

Results for Baseline Case

- Mount Simon1 formation is a promising formation for storage in IL
- Structure (dome, anticline or regional dip) is important determinant of cost

Constructing a Cost Supply Curve

- Run model for all 218 formations and 3 structural settings to give 654 data points
- Sort results for all 654 formation-structure combinations from lowest to highest first year breakeven price or cost for CO₂
- Calculate the cumulative mass of CO₂ that can be stored in all formations assuming the lowest cost formation is filled first to capacity, followed by the next lowest cost formation, and so on
- Plot the first year break-even price or cost of CO₂ for each formation on the y-axis and the cumulative mass of CO₂ that can be stored associated with each formation on the x-axis

Constructing a Cost Supply Curve

Cost Supply Curve for Baseline Case

- First year break-even price or costs range from \$5.60/tonne to over \$1,000/tonne
- Approximately 580 Gtonne of storage at less than \$10/tonne

Model Demonstration and Request for Data

- We will have a table setup at the Poster Secession this afternoon to further discuss and demonstrate the FE/NETL CO₂ Saline Storage Cost Model.
- We will also solicit cost information and observations for the model

Contributors

- This presentation represents the result of a collaborative effort from a number of individuals within NETL, including:
 - Traci Rodosta (Technology Manager, Carbon Storage Program)
 - Bruce Brown (RCSP Program Manager)
 - David Morgan (Benefits Division, OPPB)
 - Timothy Grant (Benefits Division, OPPB)
 - Brian Strasizar (Office of Research and Development)
 - Grant Bromhal (Office of Research and Development)
 - Angela Goodman (Office of Research and Development)
 - Robert Dilmore (Office of Research and Development)
 - David Wildman (Leonardo Technologies, Inc.)
 - Larry Myer (Leonardo Technologies, Inc.)
 - Derek Vikara (KeyLogic Systems, Inc.)
 - Malcolm Webster (KeyLogic Systems, Inc.)
 - Michael Tennyson (KeyLogic Systems, Inc.)
 - Christa Court (MRI Global)
 - Paul Myles (WorleyParsons Group, Inc.)
 - Steve Herron (WorleyParsons Group, Inc.)

Questions?

