

Combined Pressure and Temperature Contrast and Surface-enhanced Separation of Carbon-dioxide for Post-combustion Carbon Capture

DOE Project # DE0007531 Project Manager: Ms. Elaine Everitt

Dr. Michael S. Wong

Professor in Chemical and Biomolecular Engineering, Chemistry and Environmental Engineering **Rice University** NETL CO₂ Capture Technology Meeting July 10th, 2013

- About Rice University
- Project Overview
- Project Team
- Combined Pressure and Temperature Contrast and Surfaceenhanced Separation of Carbon-dioxide
- Selection of materials
- Integrated absorber and stripper A proof-of-concept demonstration
- Substrate functionalization
- Project Budget

Rice University

- Located in Houston, TX
- 295-acre, heavily wooded campus
- Ranked 17th in the US and in the top 100 in the world
- 650 full-time faculty, 3500 undergraduates and 2300 graduate students
- Chemical and Biomolecular Engineering program, 13 faculty members, 70 graduate students
- Chemistry program, 38 faculty members, 130 graduate students

Project Team

Project Director

George Hirasaki A J. Hartsook Professor in Chemical & Biomolecular Engineering

Co-Project Investigator

Michael Wong Professor in Chemical & Biomolecular Engineering & Chemistry

Co-Project Investigator

Kenneth Cox Professor-in-practice in Chemical and Biomolecular Engineering

Co-Project Investigator

Edward Billups Professor in Chemistry

Postdoctoral Associate

Jerimiah Forsythe PhD, Chemistry (LSU, 2011)

Undergrad Researcher

Colin Shaw Chemical & Biomolecular Engineering

Past member

Sumedh Warudkar PhD (April 2013)

- Project funding under DOE agreement DE-FE0007531
- Total project cost \$960,811 over three years. Federal share: \$768, 647 | Non-federal share: \$192,164
- Contract awarded executed October 2011
- Project duration: 10/2011 9/2014
- Project objective Performance of bench-scale R&D to demonstrate and develop Rice University's "combined pressure and temperature contrast and surface-enhanced separation of CO₂ for post-combustion carbon capture to meet DOE's goal of at least 90% CO₂ removal at no more than 35% increase in the cost of electricity"

Reference Carbon Capture Scenario

- Goals set by the DOE:
- Using 2nd generation technologies in post-combustion capture:
 - Demonstrate 90% CO₂ capture
 - Less than 35% increase in COE
 - Less than \$40/tonne with carbon capture utilization and storage
- Estimates based off of Case 10: post-capture subcritical unit
 - 550 MW coal-fired power plant with a net plant efficiency of 26.2%

Our Approach

COMBINED PRESSURE, TEMPERATURE CONTRAST, AND SURFACE-ENHANCED SEPARATION OF CO₂

Combining the Absorber and Desorber Units

A comparison of the conventional amine system with the proposed 'combined' process

Process Schematic

Integrated Absorber-Stripper

Selection of Foam Material

Ceramic Foam

- Low bulk density
- Very high macro-porosity (80%-90%)
- Very high geometric surface area
- Regulated pore-size
- Low pressure drop
- High structural uniformity
- Ease of reproducibility of structure

Structure	S (m²/m³)	Porosity (ε)	
5 mm packing spheres	600	0.392	
Raschig ceramic rings, 25 mm	200 ¹	0.646	
Corrugated metal structured			
packing (AceChemPack) –	500 ³	0.93	
500 x/y			
30-PPI -Al ₂ O ₃ foam, no	33602	0.83	
washcoat	3300	0.85	

Figure: Commercial Sample of Ceramic foam

SEM Micrographs of a Commercial Ceramic Foam Sample

Figure: Scanning Electron Micrographs of 40-ppi Ceramic Foam (a) 50x (b) 280x (c) 290x (d) 11,000x

Material Properties

Ceramic Foam			
Property	Value		
Material	99.5 % (α-Al ₂ O ₃)		
Supplier	ASK-Chemicals, USA		
D	For absorption studies: $L = 2'', \varphi = 1''$		
Dimensions	For stainless steel prototype: 8" x 4" x 1"		
Porous Ceramic Membrane			
Material	99.5 % (α-Al ₂ O ₃)		
Supplier	Refractron Inc., USA		
Dimensions	12" x 6 " x 1"		
Permeability & Gas Entry Pressure	5.37 Darcy 0.8 psi (with water)		
Gas-Liquid Separator Polymer Membrane			
Material	Polyethersulfone (Hydrophilic)		
Supplier	Pall LifeSciences Corporation, USA		
Dimensions	8'' x 8''		
Permeability & Gas Entry Pressure	0.32–1.52 Darcy 15-31 psi (with water)		

Experimental Setup CO₂ Absorption Experiments

Degree of CO₂ Removal Dependence on the Height of Ceramic Foam Packing

Combined Absorber and Stripper System Experimental Setup for Proof-of-Concept Demonstration

Combined Absorber and Stripper System Experimental Setup

Combined Absorber and Stripper System Degree of CO₂ Removal

Combined Absorber and Stripper System Lateral Flow of Absorbent

Our Approach: Substrate functionalization

COMBINED PRESSURE, TEMPERATURE CONTRAST, AND SURFACE-ENHANCED SEPARATION OF CO2

Ceramic Foam Surface Functionalization

Silane Modification of Al₂O₃

Calcinated α -alumina powder (74 – 44 μ m, with surface area = 360 m² g⁻¹)

Stability studies: exposure to 3 M MEA with 0.3 mol CO₂, pH 10.30

TGA: weight loss from 200 to 600 °C under air at 10 °C min⁻¹

APTMS Al ₂ O ₃	Weight Loss (%)	Grafting Density (molecules nm ⁻²)	Loss from exposure (%)
As prepared	0.08	7.4 X 10 ⁻⁴	N/A
1 hr exposure	0.05	6.6 x 10 ⁻⁴	0.03
24 hr exposure	0.03	6.2 x 10 ⁻⁴	0.02

Phosphonate Modification of Al₂O₃

PPA1 = single PPA deposition, PPA2 = double PPA deposition

Stability studies: exposure to 3 M MEA with 0.3 mol CO₂, pH 10.30

TGA: weight loss from 200 to 600 °C under air at 10 °C min⁻¹

PPA Al ₂ O ₃	Weight Loss (%)	Grafting Density (molecules nm ⁻²)	Loss from exposure (%)
PPA1	3.64	0.04	N/A
PPA1+1hr	0.00	0.00	3.64
PPA2	5.72	0.1	N/A
PPA2 + 1 hr	0.01	0.00	5.72

APTMS Modification of SiO₂

Due to the instability of silane and phosphonate bonds on Al_2O_3 , other substrates explored

SiO₂: Evonik Areoperl colloidal silica 30 μ m particles, 300 m² g⁻¹

APTMS (10 vol%) deposition in toluene at 90 °C, 24 hours on SiO₂

Stability studies: exposure to 3 M MEA with 0.3 mol CO_2 , pH 10.30 2 x wash with water, 2 x wash with EtOH, dry at 100 °C for 24 hours

APTMS SiO ₂	Weight Loss (%)	Grafting Density (molecules nm ⁻²)	Loss from exposure (%)
As prepared	6.64	5.0 X 10 ⁻²	N/A
1 hr exposure	5.86	2.9 X 10 ⁻²	0.8
24 hr exposure	5.30	2.0 X 10 ⁻²	0.5

Typical Coverages: 2-4 molecules nm⁻²

SiO₂ demonstrates a higher grafting density and slower loss of APTMS

Optimization should yield a stable functionalized surface under desorber conditions

Reactions between amine, CO₂, and bicarbonate

Conway, W. et al. J. Phys. Chem. A 2011, 115, 14340.

pH Effects on CO₂ Desorption with Temperature

15 mL of 3 M MEA (~ 30 wt%) loaded with 0.3 mol CO₂

N₂ bubbling through solution at 800 mL min⁻¹, temperature from 25 °C to 86 °C at 12 °C min⁻¹

Consider Acidity of Substrate Surface on CO₂ Desorption

Others have demonstrated ability of acids to liberate CO₂ from carbamates

It is not very practical to add aqueous acid to the desorber (separation issues)

However, metal oxide surfaces can function as an acid/base from the view of isoelectric points (IEP) (aka Brønsted acids/bases):

Preliminary Results: CO₂ Desorption in Presence of Metal Oxide

15 mL of 3 M MEA (~ 30 wt%) pre-loaded with 0.3 mol CO₂

To each solution, 1.5 g of MO_x powder added, 15 min equilibration

N₂ bubbling through solution at 800 mL min⁻¹, temperature from 25 °C to 86 °C at 12 °C min⁻¹

Summary and Conclusions

- Combined absorber/desorber for CO₂ removal
 - We have identified commercially available materials ceramic foams that can be used to combine the absorber and desorber
 - 1-D CO₂ absorption studies were conducted to select conditions suitable for achieving 90% CO₂ removal in a bench-scale system
 - Feasibility of the combined absorber/desorber system was demonstrated in a bench-scale, stainless steel prototype (90% CO₂ removal could be achieved for simulated flue gas containing 13% CO₂ with 30 wt% diglycolamine (DGA) as the absorbent)
- Substrate functionalization and metal oxide effects
 - α -Al₂O₃ is a poor substrate for silane and phosphonate functionalization due to low surface coverage and instability at high pH
 - Surface functionalization chemistry can be optimized to improve grafting density and stability at high pH
 - Presence of metal oxides increases CO₂ desorption amount, suggesting a simple approach to improve stripper performance

Modeling combined absorber/desorber CO₂ separation process

- A commercial fluid flow simulation software such as COMSOL Multiphysics will be used to develop a flow model
- A simpler, 1-D model is the first step, followed by models with greater complexity
- Completion of surface functionalization
 - Increase coverage and stability of APTMS on SiO₂ substrates
 - Test the hypothesis that metal oxides 'catalyze' carbamate decomposition
 - Demonstrate functionalized vs. non-functionalized substrates in absorption/desorption process

Project Budget

Budget Period	Budget Period	Budget Period	Budget Period	
Object Class Category	1 (10.01.11 – 09.30.12)	2 (10.01.12 – 09.30.13)	3 (10.01.13 – 09.30.14)	Total
Personnel	\$134,079	\$180,738	\$113,637	\$428,454
Fringe Benefits	\$28, 586	\$40,953	\$29,811	\$99,350
Travel	\$4,700	\$4,700	\$4100	\$13,500
Equipment	\$27,035	\$0	\$0	\$27,035
Supplies	\$25,000	\$15,000	\$15,000	\$55,000
Contractual	\$0	\$0	\$0	\$0
Construction	\$0	\$0	\$0	\$0
Other	\$11,600	\$10,480	\$600	\$22,680
Total Direct Charges	\$231,000	\$251,871	\$163,148	\$646,019
Indirect Charges	\$102,094	\$127,045	\$85,653	\$314,792
Federal Share	\$243,621	\$327,568	\$197,458	\$768,647
Non-Federal Share	\$89,473	\$51,348	\$51,343	\$192,164
Total	\$333,094	\$378,916	\$248,801	\$960,811

Acknowledgements

Personnel

- •Dr. Joe Powell, Chief Scientist at Shell Oil Company
- •Dr. TS Ramakrishnan, Scientific Advisor at Schlumberger-Doll Research Center
- •Hirasaki Group & Wong Group members at Rice University

Additional Funding Support

- •Energy and Environmental Systems Institute (EESI) at Rice University
- •Rice Consortium on Processes in Porous Media
- •Schlumberger

