Briggs White, Robin Ames, and Patcharin Burke US Dept. of Energy – National Energy Technology Laboratory

Motivation

- Lack of turbine condition information available for setting research boundary conditions including:
- Anticipated moisture levels
- Anticipated sulfur levels
- Anticipated particulate concentrations, sizes, and compositions

Approach

• Reviewed plant conditions for 5 existing IGCC plants, 2 IGCC plants with carbon capture in the planning/construction phase, and system studies by DOE and OEMs

• Data and conclusions reviewed by industry experts

			DOE	Baselin	ie Syste	m St	udy Ca	ases	
	Case	Unit Cycle	Steam Cycle, psig/ºF/ºF	Combustion Turbine	Gasifier/Boiler Technology	Oxidant	H ₂ S Separation/ Removal	Sulfur Removal/ Recovery	CO ₂ Separa- tion
	1	IGCC	1800/1050/1050	2 x Advanced F Class	GEE Radiant Only	95 mol% O2	Selexol	Claus Plant	
3 cases of interest	2	IGCC	1800/1000/1000	2 x Advanced F Class	GEE Radiant Only	95 mol% O2	Selexol	Claus Plant	Selexol 2 rd stage
	3	IGCC	1800/1050/1050	2 x Advanced F Class	CoP E-Gas™	95 mol% O2	Refrigerated MDEA	Claus Plant	
	4	IGCC	1800/1000/1000	2 x Advanced F Class	CoP E-Gas™	95 mol% O2	Selexol	Claus Plant	Selexol 2 nd stage
	5	IGCC	1800/1050/1050	2 x Advanced F Class	Shell	95 mol% O2	Sulfinol-M	Claus Plant	
	6	IGCC	1800/1000/1000	2 x Advanced F Class	Shell	95 mol% O2	Selexol	Claus Plant	Selexol 2 nd stage

Sulfur

- •Sulfur contents in the clean, shifted syngas of existing IGCC plants ranges from less than 10ppm (dry coal feed) to 257 ppm (slurry coal feed). Sulfur is less than 100 ppm in most existing IGCC plants
- •Sulfur concentrations < 20 ppm should be anticipated in IGCC plants with carbon capture (Industry feedback and DOE baseline study)
- •Sulfur in the hot gas path will significantly lower than in the clean shifted syngas due to dilution of the combusted sulfur products by the main working fluid (air) plus NOx suppressing combustion diluents prior to entering the turbine section. ~22 ppm sulfur concentrations in the clean shifted syngas corresponds to ~3 ppm in the exhaust

Plant Class	Plant Name	Clean, Shifted Syngas - Total Sulfur	Total Sulfur Stack Emissions	Calculated Turbine Section Sulfur Concentration*	Comments	Ref
	Tampa Electric	257 ppmv	1.17 lb/MWh	87 ppm	COS catalyst, Amine AGR	DOE Fir R
Existing IGCC plants without carbon capture	Wabash Repowering	100 ppmv	1.08 lb/MWh	74 ppm	COS catalyst, Amine AGR	DOE Fir R
	Buggenum	< 10 ppmv	0.06 lb/MWh	4 ppm	COS catalyst, Sulfinol AGR	Presentat line, NETL availat
	Puertollano	12-24 ppmv	0.10 lb/MWh	8 ppm	COS catalyst, Amine AGR	Presentat line, NETL availat
Planning/Constructio n Phase IGCC plants with carbon capture	Texas Summit	< 100ppb	0.14 lb/MWh	13 ppm	WGS CO-shift (COS->H ₂ S), Rectisol AGR	
	Kemper	<10ppmv	0.0040 lb/MMBtu	1 ppm	2 WGS reactors in series, COS catalyst if needed, AGR not specified	
System Studies with carbon capture	DOE Baseline IGCC - Case 2 GE gasifer	23 ppmv	< 3 ppmv (0.010 Ib/MMBtu)	3 ppm	2-stage Selexol designed for 95 % CO ₂ capture resulted in >99.7 % sulfur capture	DOE Ba
	DOE Baseline IGCC - Case 4 CoP E-Gas gasifer	22 ppmv	< 3 ppmv (0.0085 lb/MMBtu)	2 ppm	2-stage Selexol designed for 95 % CO ₂ capture resulted in >99.7 % sulfur capture	DOE Ba
	DOE Baseline IGCC - Case 6 Shell gasifer	22 ppmv	3 ppmv (0.0105 Ib/MMBtu)	3 ppm	2-stage Selexol designed for 95 % CO ₂ capture resulted in >99.7 % sulfur capture	DOE Ba
Industry Anticipated	GE	< 10 ppm	Not Specified		Not Specified	GE Cor
New Source	Siemens Calculated assuming	ted assuming				Siemens
Performance Standards (NSPS)	generic 2x1 711 MW Gross Plant		1.4 lb/MWh	118 ppm	0.162 lb/MMBtu (based on heat rate of 8,640 Btu/kWh)	

*Calculated Turbine Section Sulfur Concentration was calculated using the Total Sulfur Stack Emissions for the various plants while assuming exhaust flow rates of 4,219,005 lb/hr for 1 x 1 configurations and 8,438,010 lb/hr for 2 x 1 plants, consistent with IGCCs based on F-class turbines and a steam bottoming cycle. Also assumed 1 MWh = 3.412 MMBtu where needed.

References

- 1. John McDaniel, Tampa Electric Polk Power Station Integrated Gasification Combined Cycle Project, Final Technical Report, August 2002.
- 2. Final Technical Report Wabash River Coal Gasification Repowering Project. August 2000.
- 3. EPRI. Integrated Gasification Combined Cycle (IGCC) Design Considerations for High Availability. Vol. 1: Lessons from Existing Plants. 1012226.
- 4. Final Environmental Impact Statement for Texas Clean Energy project. DOE/EIS-0444. August 2011.
- 5. Final Environmental Impact Statement Kemper County IGCC Project. DOE/EIS-0409. May 2010.
- 6. Cost and Performance Baseline for Fossil Energy Plants. Vol. 1: Bituminous Coal and Natural Gas to Electricity Final Report. May 2007. DOE/NETL-2007/1281.

NETLCONDITIONS IN Advanced Turbines for IGCC Power Plants with Carbon Capture

- OEMs agree that turbine inlet moisture contents will range 15-18%. but will depend on level of carbon capture, fuel/air ratio, and strategies for combustor dilution and component cooling
- State-of-the-art IGCC plants have syngas with 10-20 ppm sulfur in the cleaned syngas fuel and will be less in the turbine section
- Air stream flow rates are 30X more than fuel flow rates suggesting that particulate concentrations, compositions, and sizes will strongly reflect the composition of the filtered air stream rather than the coalderived syngas
- OEM's typically filter particle sizes to less than 10 microns
- Fe and Ni can deposit in turbine section along with air-borne dust compounds

 Range (%)	Average (%)
86-91%	84%
0-14%	6%
1-3%	2%
2-4%	3%
1-1%	1%
1-5%	3%
77%	77%
21%	21%
1%	1%
1%	1%
74-75%	75%
12-14%	13%
10-11%	11%
1%	1%
1%	1%

Particulates

Potential sources:

- 1. coal ash
- 2. syngas reactions with piping and components
- 3. syngas combustion by-products
- 4. air-borne dust that passes through intake filters

Findings:

- •OEM specifications generally limit particulates:
- sizes < 10 microns
- concentrations < 20 ppm
- •New IGCC with carbon capture plants will have particulate stack emissions less than ~7 ppm in accordance with New Source Permit Standards
- •Fly ash will be collected in filtration systems, sulfur removal systems, and CO_2 removal systems and hence is not likely to be present in the turbine section
- Metallic turbine components can react with sulfur and hydrocarbons to form compounds that have been found in the turbine sections. Pipe scale filtration and the use of corrosion-resistant stainless steel can mitigate damage
- •30:1 air:fuel mass flow rate suggests air-borne dust should be more prevalent than syngas-derived particulates in turbine section
- •Air-borne particulates will reflect location character and could be site-specific •Ca-Mg-Al-Si (CMAS) should be a reasonable approximation for the melting components in generic air-borne dust
- •OEMs indicated that exhaust could contain SiO₂, Fe₃O₄, CaO, and Al₂O₃

Plant Class	Plant Name	Stack Particulate Emissions	Calculated Turbine Section Particle Concentration*	Pertinent Fuel Clean Up Processes	
Existing IGCC plants without carbon capture	Tampa Electric	0.037 lb/MWh	2.1 ppm	Particle removal system, COS catalyst, MDEA AGR, Y strainers and 10 micron filter critical for turbine protection from pipe-scale during start-ups.	DC
	Wabash Repowering	0.012 lb/MMBtu	2.4 ppm	Particle removal system (99.9 % efficient), sour water scrubbing for CI and trace metals, condenser, Amine AGR	D
	Buggenum	< 1 mg/m ³		Cyclone, ceramic candle filter, water scrub for NH_3 + halides, COS catalyst, Sulfinol M AGR	Pres line, a
	Puertollano	0.05 mg/m ³		Candle filter, water wash scrub, COS catalyst, MDEA AGR	Pres line, a
lanning/Constru tion Phase IGCC plants with carbon capture	Texas Summit	0.22 lb/MWh	12 ppm	Particle removal, Rectisol AGR designed for 90% CO ₂ capture	
	Kemper	0.015 lb/MMBtu	5.4 ppm	Cyclone, filters w/ pulsing, saturator column, two WGS reactors in series, water scrub, AGR, system designed for 60% CO ₂ capture. "Downstream of each filter element, a device would safegaurd the CT from particulate-related damage in event of a filter element failure"	
System Studies with carbon capture	DOE Baseline IGCC - Case 2 GE gasifer	0.056 lb/ MWh 0.0071 lb/MMBtu	3.7 ppm	Syngas scrubber, cyclone, and candle filters, 2-stage Selexol designed for 95 % CO ₂ capture	DC
	DOE Baseline IGCC - Case 4 CoP E-Gas gasifer	0.057 lb/MWh 0.0071 lb/MMBtu	3.5 ppm	Syngas scrubber, cyclone, and candle filters, 2-stage Selexol designed for 95 % CO ₂ capture	DC
	DOE Baseline IGCC - Case 6 Shell gasifer	0.057 lb/MWh 0.0071 lb/MMBtu	3.5 ppm	Syngas scrubber, cyclone, and candle filters, 2-stage Selexol designed for 95 % CO ₂ capture	DC
New Source Performance Standards (NSPS)	NA	0.015 lb/MMBtu			

*Calculated Turbine Section Particle Concentrations were calculated using the Stack Particle Emissions for the various plants while assuming exhaust flow rates of 4,219,005 lb/hr for 1 x 1 configurations and 8,438,010 lb/hr for 2 x 1 plants, consistent with IGCCs based on F-class turbines and a steam bottoming cycle.

Potential Impact

A F-class turbine with 20 ppm of particulates in its exhaust ingests ~2,000,000 lbs of material in a standard hot gas path inspection interval (24,000 hrs)

- Assumes F-class turbine exhaust flow rate of 4,219,005 lb/hr
- Performance and lifetime impacts will depend on variables such as firing temperature, particulate size and composition, as well as aerodynamic considerations

Acknowledgements

- Information, review, and discussion representatives of General Electric and Siemens Energy
- Review and discussion Dr. Jeffrey Bons, Dr. John Hurley, Dr. Maryanne Alvin, John Marano, and Dr. Seth Lawson
- General support Heather Quedenfeld and Richard Dennis

