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Introduction to facilities at Penn State 
 
Particle deposition on external surfaces 
 
Particle deposition on internal surfaces 

The presentation will cover several items related to 
aero-heat transfer experiments done at Penn State 

Han et al. 



Several flow facilities are available in the PSUExCCL 

Removable turbine 
airfoil test section 

Mainstream 
Flow 

Coolant Flow 

Wax 
Particulate 



Several flow facilities are available in the PSUExCCL 



Heat Transfer Facility 

Features: 
 10x 
 MDF test section 
 Cutout for Zinc-Selenide window 
 Optical access in IR spectrum 
 IR thermography measurements 

Flowfield Facility 

Features: 
 64x 
 Glass/polycarbonate test section 
 Optical access in visible light spectrum 
 PIV measurements 



A test facility was developed to investigate rust 
injection at rotating conditions 
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  ω (rpm) r (mm) 
ac 

(m/s2) Ω 
Turbine 3600 856 122000 1 

PSU Test 
Facility 

500 105 287 0.002 
10300 122000 1 

Comparison with Gas Turbine 



Basics of PIV operation 

Flowfield measurements are made using time-resolved PIV 
PIV orientation in facility 

Wake measurements 
Constant Z/H = 0 (channel symmetry plane) 

Facilities and Measurement Techniques 

Time-resolved: 
1000 Hz 

500 Hz Nyquist  

y+ = 5 (between vectors) 

Spatially-resolved: 
1024x1024px 

125mm x 125mm viewing area 
7.6 pixels/mm 30x shedding frequency 

at Re = 2.0e4 

Statistical convergence: 
3000 samples 

(1000 for convergence) 

Flow crosses domain 
minimum 60 times 



Heat transfer measurements are made with IR thermography 

IR Camera orientation in facility 
Constant heat flux method 

X 

Z 

Pin-fins 

Heaters 

Calibration TCs 

Flow 

Removable Insulation 

IR Camera 

Line-of-sight 

Air Gap 

Top heater 

Bottom heater 

Raw IR Image 

Zinc-Selenide 



We need to gain a better understanding of the 
effects of particle deposition 

[Hamed et al., 2006] 

Land Based Applications Aircraft Applications 



[Hill and Peterson, 1992] 

Pressure Side  
Film-Cooling (Flat Plate) 

Endwall 

Leading Edge (Showerhead) 

High Pressure Turbine – 1st Stage 

Dynamically simulate particle deposition on external  and 
internal surfaces to determine effects on cooling 

Trailing Edge Cooling 

Double-Walled Liner 

Root of Blade 

Airfoil 
Platform 

Seal Pin Slot 



This presentation covers aspects related to dirt, 
dust, and rust on external and internal flow paths 

Film-Cooling 

Endwall Showerhead 

External Flow Path 
    Scaling issues 
     Simulation methods 
     Results for three regions 

Internal Flow Path 
    Scaling issues 
     Simulation methods 
     Results for two regions 

Double-Walled Liner 
Root of Blade 

Airfoil 

Seal Pin Slot 



Particle motion and particle phase must be properly 
scaled from engine to laboratory conditions  
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L∞ = distance from combustor to turbine surface 
U∞,i = inlet mainstream velocity 

TSP < 1 Solid (S) 
TSP > 1 Molten (M) 



[Hill and Peterson, 1992] 

Pressure Side  
Film-Cooling (Flat Plate) 

Endwall 

Leading Edge (Showerhead) 

High Pressure Turbine – 1st Stage 

Dynamically simulate particle deposition on external surfaces 
to determine effects on cooling 



Initially, only large 
molten particles deposit 

Eventually, small solid 
particles stick to existing 
deposits 

Before 
Deposition 

After 1200g  After 2400g After 3200g 

I = 0.23  
M = 0.50  

Wax was injected in different stages to observe 
deposition and effectiveness development 



Effectiveness reduction approached an equilibrium 
state as deposition area coverage increased 
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Deposition within leading edge cooling holes 
decreased with an increase in blowing ratio 
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All three trench depths reduced the negative impact 
of deposition on endwall cooling effectiveness 
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Contouring can alter cooling patterns and lead to 
deposition regions 
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Experimental deposition patterns were similar to 
computationally predicted accretion rates 

Flat  
Endwall 

Contoured  
Endwall 
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Accretion rate (kg/s)/m2 

0.0 0.2 0.4 0.6 0.8 1.0 

Exp. 

CFD 

M = 1.0 

x 10-3 



Effects of deposition on cooling varied with location 
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[Hill and Peterson, 1992] 

Trailing Edge Cooling 

Double-Walled Liner 

High Pressure Turbine – 1st Stage 

Root of Blade 

Airfoil 
Platform 

Seal Pin Slot 

Dynamically simulate particle deposition on internal surfaces 
to determine blockage effects and heat transfer implications 



Injection sand amounts were determined based on 
field hardware 
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Sand diameter causes the melting point to be lower 
than is reported for this chemical substance 

1700°F 1800°F 

1900°F 2000°F 

Room 
Temperature 

Reported Melting Temperature 

2930°F [Incropera & DeWitt] 

3130°F [Handbook of Chem. & Phys.1981] 



The impingement jets and film-cooling jets were 
tested both staggered and aligned  

Aligned Staggered 

+ = impingement holes 
o = film-cooling holes 



The S/D = 3.1 had less blockage due to decreased 
crossflow and decreased jet spreading 
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A similar trend for spacer thickness was seen with 
both staggered and aligned holes 
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Rust can form in components along the flow path for 
secondary air used to cool the turbine blades 

Compressor Turbine 
Combustor 

Filter 

Rust on Rotor Hardware 

Rust in Secondary Air Piping Heat 
Exchanger 

http://powerccl.co.uk/turbine-corrosion.html 



Rust particles entrained in the secondary flow can 
deposit in the axial seal pin region between blades 

Rear Blade 
Clearance 

Front Blade 
Clearance 

Front 
Blade 

Platform 
(Flat) 

Gap Between 
Platforms 

Air  Leakage 
Flow 

Axial 
Seal Pin 

Mainstream 
Gas Flow 
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T1 

P02     
T02 

Platform 
Gap 

Rotation 

Air 
Leakage 

Flow 

Seal 
Pin 

Secondary Flow at Axial Seal Pin 
Purpose of seal pin is to: 
- Prevent ingress of mainstream gas flow 
- Damping mechanism 
 
Particle deposition in seal pin leads to: 
- Flow blockage and particle conglomeration  
- Prevents free movement of pin 



Effects of temperature and compaction due to 
rotation were evaluated for an axial seal pin 

Effects of temperature and 
rotation on rust particles 

Development of a rotating 
facility and method 

Effects of rotation on 
rust deposition 

Effects of rust on static 
engine hardware  



Flow blockage was found to increase with pressure 
ratio due to particle lodging at high velocities 
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Some key physical observations resulted from tests 
of the metal oxide compounds at high temperatures 

Most changes take place above 1500°F 
 
 

Prolonged exposure to high-temperatures yielded 
similar results with shorter exposure 
 
 
Particles conglomerate into large chunks at 
temperatures between 1700-2000°F (955-1093°C) 
 
 
Red iron-oxide Fe2O3 turns black at elevated 
temperatures 

 
 

unheated heated to  
850°C (1560°F) 



Turbine-representative rotational forces resulted in 
significant compaction of rust particles 

r (mm) ω (rpm)  ac (x g)    Ω           
                    3,600   12,400     1 
 

  10,000   12,100         1 
 

         centrifuge      108 

Rust particles Sample tube 

onacceleratilcentrifugaturbine
onacceleratilcentrifuga

=Ω

    turbine first row  856 

Before centrifuging:  ρ = 0.9 g/cm3 

After centrifuging:  ρ = 2 g/cm3 

The effects of the centrifuge were similar on previously heated and unheated 
samples and for rotating speeds corresponding to Ω = 1 and Ω = 6  



A modified centrifuge simulated effects of rotation; 
surface roughness was matched on specimens 
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The flow function was similar for each of the three 
test coupons and scaled with the flow area 

Test Configurations 
(Top View of Chamber) 
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After injection, particles sizes were analyzed 
showing deposits near seal pin to be smaller 
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Flow blockages were nominally independent of 
rotational forces for this particular geometry 
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In conclusion, the effects of deposition can have 
profound impacts on heat transfer 

Trenches and endwall contouring can 
help to mitigate the negative effects of 
deposition on cooling effectiveness 

 

Double-walled liners can be designed to 
reduce blockages 

 

Centrifugal effects can be important in 
some designs 

 

Testing is needed to determine what the 
effects might be! 

 

Root of Blade 

Airfoil 
Platform 

Seal Pin Slot 



Those who really do all the work….. 

And…Seth Lawson, Nick Cardwell, Cam Land, Scott Walsh, Steve Lynch, Duane Breneman  
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profound impacts on heat transfer 

Trenches and endwall contouring can 
help to mitigate the negative effects of 
deposition on cooling effectiveness 
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reduce blockages 

 

Centrifugal effects can be important in 
some designs 

 

Testing is needed to determine what the 
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Wax droplets were tracked in the Lagrangian frame as 
discrete particles with simulated dispersion 
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Lumped capacitance 
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Flow visualization was performed with a high speed 
camera and Nd:YLF pulsed laser 
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Digital pictures showed effects upstream of the film-
cooling plate of the varying spacer thicknesses 

S/D = 1.6 

S/D = 6.3 S/D = 4.7 

S/D = 2.3 S/D = 3.1 



Deposition varied with blowing ratio and was 
thickest near stagnation at M = 1.0  
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Wax droplets were tracked in the Lagrangian frame 
as discrete particles with simulated dispersion 
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The sand diameter and densities dictate how the 
sand travels through the flow 
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Sand ingested can deposit on internal surfaces 
blocking channels and roughening surfaces 

Trailing edge blocking 

23     (Nu number decrease)    
               At the actual Re number, the Nusselt  
               number also drops due to sand blockage 
 
Overall heat transfer effect is between 5-10% 

12    (Re number decrease)  
              For a given PR, the amount of air through  
              a channel drops due to sand blockage             



Leading edge cooling effectiveness increased with 
blowing ratio while coolant jets were attached 
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Deposition patterns were sensitive to trench depth 
having a strong correlation with coolant patterns 
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Impingement holes aligned with film-cooling holes 
caused increased blockage 
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On an endwall effectiveness reduction was as high 
as 30% for passage cooling holes 
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The methods used to dynamically simulate effects of 
deposition were applied in a wind tunnel facility 
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and Turbulence Grid 
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Typical experiments made use of gravity fed sand 
into the test coupons 
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