

NATIONAL ENERGY TECHNOLOGY LABORATORY

Overview of NETL Heat Transfer Studies in a High Temperature Test Rig

S. Lawson, S. Beer, K. Casleton, T. Sidwell and D. Straub National Energy Technology Laboratory

2012 UTSR Workshop

October 2-4, 2012 Irvine, CA

National Energy Technology Laboratory

MISSION

Advancing energy options to fuel our economy, strengthen our security, and improve our environment

Oregon

Pennsylvania

West Virginia

Regional University Alliance NETL's Institute for Advanced Energy Studies

Leveraging National Lab and University-Based Scientific and Engineering
Assets to Address Significant National Energy Issues

Outline

- Overview high temperature/high pressure test facility
 - Hardware and facility capabilities
- Overview results since last UTSR Workshop
 - Rig validation efforts
 - 3D CFD and conjugate heat transfer results

Project Background

Modify an existing high pressure combustion rig

Provide "realistic" hot gas path conditions for collaborative efforts

Optical viewports

"Proof-of-concept" testing for cooling and sensors

Facility and Rig Capabilities

Facility capabilities

- 2 lb/s air flow @ 700 psi
- 800-900 F air preheat (independent control)

Rig capabilities

- 2 lb/s air flow @ 10 atm
- Max inlet air temperature (800F)
- Natural gas or hydrogen fuels

Combustor design

- Swirl-stabilized
- Lean premixed gaseous fuel
- Diffusion pilot (12 jets)
- Quartz combustor liner
 - No dilution cooling jets
 - No upstream film cooling

Experimental Setup – Detailed Description

Heat transfer section

- Refractory lined walls
- Transition to rectangular cross-section
 - Nominal 4" ID to 5"x 2" flow channel
- Test samples flat plates
 - Haynes 230 coupons
 - 2" x 2" x 0.25" thick
 - Flush with interior walls
- External viewport
 - Commercial quartz flange
- Internal viewport
 - 3" OD x ½" thick quartz
 - Flush with inner wall

Experimental Setup -- Overview

(Film Cooling Test Section; dimensions in mm)

What Variables Can We Control?

- Operating pressure (1-10 atm)
- Free-stream temperature (1000 1300C)
- Free-stream velocity (30-100 m/s)
 - Limited by flashback and blowoff in combustor
- Cooling air flowrate
 - Blowing ratio
- Film cooling design
 - Without TBC
 - With TBC

What Variables Are We Measuring?

What Is The Basis For Our Uncertainty Goals?

- Overall Cooling Effectiveness
 - Increase gas temperature
 - Maintain same metal temp
 - Maintain same coolant temp
- Area-averaged improvement to achieve program goal is approximately 0.10
- Experimental uncertainty must be significantly smaller than this value
 - Similar argument for heat flux reduction

$$\phi = \frac{T_{\infty} - T_{w}}{T_{\infty} - T_{c}}$$

What Are Reasonable Uncertainty Goals For NETL's High Temperature Test Rig?

Dependent	Uncertainty Goals: Less than			
Variable	Local	2D Image		
ϕ	<u>+</u> 0.03	<u>+</u> 0.06		
Overall Effectiveness				
Δq_r	<u>+</u> 0.06	<u>+</u> 0.12		
Net Heat Flux Reduction				

IR Thermography With Significant Ambient Interference

(i.e., Hot Wall Effects)

- Optical approach cannot differentiate between reflected and emitted photons
 - Design of a multi-color probe (Apogee Scientific)
 - Develop single wavelength approach using in-house expertise

$$I_{cam} = \varepsilon I_s + \rho I_w$$

Test Article Surface

Optical Measurements Validated Against Local Thermocouple Measurements

$$q_{loc}'' = \frac{k}{t_1} (T_{w,loc} - T_{c,loc})$$

$$q_{opt}'' = \frac{k}{t_2} (T_{w,opt} - T_{c,opt})$$

Compare q"_{loc} to q"_{opt} to validate measurements

Test to Assess Variations With Location and Time

Cold Side Image

Hot Side Image

Results From Reference Test Specimen

(no film cooling)

1000

900

800

700

600

500 400 *500*

400

300

200

100

Temperature Contours

Embedded TC Locations

Cold Surface TC Locations

Heat Flux Contour

 $P_{\infty} = 3 \text{ bar}$

	Area 1				Area 2			
	Thermocouple	Optical	Residual	Residual %	Thermocouple	Optical	Residual	Residual %
Hot Side Temp [C]	747.80	751.60	3.80	0.51	730.63	742.40	11.77	1.61
Cold Side Temp [C]	720.72	722.83	2.11	0.29	705.65	708.60	2.94	0.42
Overall Effectiveness	0.351	0.349	0.00	0.81	0.367	0.360	0.01	1.92
Heat Flux [kW/m ²]	72.94	77.49	4.55	6.24	67.28	91.05	23.78	35.34

Experiments Were Conducted Using A Coupon With Fan Shaped Film Cooling Holes

 $M = 1.0, P_{\infty} = 5.1 \text{ Bar}, T_{\infty} = 1145 ^{\circ}\text{C}$

Temperature Contours

Embedded TC Locations

Area 2º o Area 1

Cold Surface TC Locations

Heat Flux Contour

750

500

250

900

800

700 600

500 400

·	Area 1				Area 2			
	Thermocouple	Optical	Residual	Residual %	Thermocouple	Optical	Residual	Residual %
Hot Side Temp [°C]	816.63	825.80	9.17	1.12	785.99	776.20	9.79	1.25
Cold Side Temp [°C]	775.86	777.90	2.04	0.26	737.44	711.70	25.74	3.49
Overall Effectiveness	0.368	0.362	0.01	1.62	0.405	0.424	0.02	4.66
Heat Flux [kW/m ²]	127.21	149.47	22.27	17.50	151.51	201.27	49.76	32.84

Overall Effectiveness And Heat Flux Contours Were Generated For Four Blowing Ratios

Data From NETL Test Rig Can Achieve Desired Uncertainty Goals

Dependent	Uncertainty Goals Less than			
Variable	Local	2D Image		
ϕ	<u>+</u> 0.03	<u>+</u> 0.06 ¹		
Overall Effectiveness	<u>+</u> 0.02			
Δq "	<u>+</u> 0.06	<u>+</u> 0.12 ²		
Net Heat Flux Reduction	<u>+</u> 0.04			

¹ Contour maps compare to within <u>+</u>0.02 of the local effectiveness measurements (so far)

² May require larger temperature difference (higher temperature/pressure test conditions/higher cold side heat transfer coefficient). Both options are possible with current test rig.

CFD ModelingGoals

- Assist refinement of the surface temperature measurement techniques being developed and validated experimentally under this task by performing conjugate heat transfer (CHT) modeling of the aerothermal test module
- Develop predictive capability to assist with evaluation of film cooling designs

Overview

- Modeling of combustor
- Modeling of test module
 - Three cooling geometries
 - Round holes, round holes with trench, laidback fan-shaped holes
 - Coarse meshes with standard wall functions
- FY12
 - Modeling of test module
 - One cooling geometry (laidback fan-shaped hole)
 - Improved convective heat transfer predictions
 - Wall model, turbulence model, mesh refinement, discretization order
 - Radiative heat transfer study planned

Combustor and Test Section Geometries and Model Domains

CHT Modeling with Convective and Conductive Heat Transfer

- Sensitivity of convective HT to select model parameters
 - Turbulence model (Re k-ε and SST k-ω)
 - Discretization order (1st and 2nd)
 - Mesh (three cases fine, intermediate, coarse)
 - Coupon-retainer coupling (effect of finite thermal contact resistance)
- Simulation cases:

Model Case	Turbulence Model	Solution Order	Mesh Case	Coupon Cooling Flow	Coupon- Retainer Coupling	Radiation
1	Re k-ε	1st	1	Y	Y	N
1A	Re k-ε	2nd	1	Υ	Υ	N
1B	Re k-ε	2nd	3	Υ	Υ	N
1C	Re k-ε	2nd	1	Υ	N	N
1D	Re k-ε	2nd	3	Υ	N	N
1E	Re k-ε	2nd	2	Υ	Υ	N
2	SST k-ω	1st	1	Υ	Y	N
2A	SST k-ω	2nd	1	Υ	Υ	N
2B	SST k-ω	2nd	3	Υ	Υ	N
2C	SST k-ω	2nd	1	Υ	N	N
2D	SST k-ω	2nd	3	Υ	N	N
2E	SST k-ω	2nd	2	Υ	Υ	N
2F	SST k-ω	2nd	1	N	Υ	N
2G	SST k-ω	2nd	1	N	N	N

Mesh Case 1: 4.3x10⁶ Cells, 1st Layer Thickness = 0.025 mm, Total Layers = 12

Mesh Case 2: 6.9 x106 Cells, 1st Layer Thickness = 0.020 mm, Total Layers = 13

Mesh Case 3: 8.5x10⁶ Cells, 1st Layer Thickness = 0.014 mm, Total Layers = 15

Temperature Contours on Transverse Planes (Case 2A)

Temperature Contours on Axial Planes (Case 2A)

Test Coupon Axial Heat Flux Profiles (Case 2A)

Summary

NETL test rig validation

- Significant improvement in IR temperature measurements
- Achieved uncertainty goals for measuring overall film cooling effectiveness and local heat flux reduction
- Very close to achieving uncertainty goals for 2D heat flux reduction contours

Conjugate heat transfer CFD modeling

- Completing grid sensitivity studies
- Radiative heat transfer study (not yet completed)
 - Realistic comparison with measured metal temperatures
- University and industrial collaboration is encouraged

Acknowledgments

We acknowledge Mr. Richard Dennis and Ms. Rin Burke at DOE NETL for their support

Collaborative efforts are being performed under the NETL-Regional University Alliance (RUA)

Contract DE-FE-0004000

Field Work Proposal Number 2012.03.02