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Background 
Challenges: 
•  Modern turbines are designed to operate close to the 

material’s maximum allowable temperature and temperature 
gradient.  So, there is little room for mistakes in designs. 

•  Burning coal-derived fuels affect heat transfer through 
increased flow rates, erosion/deposition, and high-
temperature oxidation.  Adds burden & uncertainty to cooling 
designs.  

•  New designs that greatly reduce cooling flow are outside of 
the empirical design experience.  Thus, need physics/
math-based design tools. 

Bottom line:  need better design tools and better understanding of the 
flow and heat transfer as a function of design and operating parameters. 
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On design tools, the issues are 
•  verification, validation, and uncertainty quantification 
•  Quality of and info on benchmark data used for validation   
•  turbulence modelling, conjugate vs non-conjugate CFD analysis 
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Show challenges from two validation studies. 
 
Assess the accuracy of a measurement technique widely 
used to generate benchmark data to validate CFD. 
 
Contrast conjugate vs. non-conjugate CFD analysis in 
the predicted heat transfer. 
 
Show complications induced by unsteady heating and 
cooling. 
 
Summarize. 

Outline of Talk 
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Objective:  Assess steady & unsteady RANS: SST, RSM-τω and LES (lattice 
Boltzmann) for a more complicated problem. 
Why?  Must know when unsteady RANS and LES are needed and why.	



Assess Turbulence Models:  Flow over Wall-Mounted Cube 
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Assess Turbulence Models:  Flow over Wall-Mounted Cube 
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Experiment 

Assess Turbulence Models:  Flow over Wall-Mounted Cube 
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Experiment	
  
(Mar.nuzzi	
  &	
  
Tropea,	
  1993) 

VLES	
  via	
  LBM	
  with	
  900	
  nodes	
  (Present	
  study) 
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Assess Turbulence Models:  Flow over Wall-Mounted Cube 

Krajnovic and Davidson, AIAA 2002 

Martinuzzi & Tropea, 1993 (Experiment) 

Shah & 
Ferziger, 
1997 
 

Present study: VLES simulation 
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Summary: 
 
•  Steady RANS cannot yield correct solutions for this configuration – 

not even stress-omega full Reynolds stress model that integrates 
to the wall. 

•  Unsteady RANS produced reasonable results. 

•  Exploring difference between time-averaged results from large-
eddy simulation (LES) and unsteady RANS based on stress-
omega. 

•  Goal of studies on the cube and other configurations is to 
understand what flow and heat-transfer mechanisms could or could 
not be predicted by steady RANS, unsteady RANS, and LES. 

Assess Turbulence Models:  Flow over Wall-Mounted Cube 
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Ω=3,600 RPM 

Vin 

Pexit 

Re   = 37K, 100K 
Tin    = 673.15 K 
Twall  = 1273.15 K 
Pexit  = 2,300,000 Pa 
Vin      = 3.48, 9.41 m/s  
I    = 5% 
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Flow in a U-Duct with a Trapezoidal Cross Section 
(Siemens:  Crawford, Marra, Prakash, Brown, Lee) 



k-ε	

 SST RSM-τw 

3,694,080 cells 
for half domain 

2,530,560 cells 
for half domain 

4,129,920 cells 
for half domain 

Flow in a U-Duct with a Trapezoidal Cross Section 
(Siemens:  Crawford, Marra, Prakash, Brown, Lee) 
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Experiments from Mingking Chyu, Pitt 

Flow in a U-Duct with a Trapezoidal Cross Section 
(Siemens:  Crawford, Marra, Prakash, Brown, Lee) 



Unsteady RANS (RSM –stress omega) 

EXP 

VLES 
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Experiments from 
Mingking Chyu, Pitt 

Flow in a U-Duct with a Trapezoidal Cross Section 
(Siemens:  Crawford, Marra, Prakash, Brown, Lee) 
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Show challenges from two validation studies. 
 
Assess the accuracy of a measurement 
technique widely used to generate benchmark 
data to validate CFD. 
 
Contrast conjugate vs. non-conjugate CFD analysis in the 
predicted heat transfer. 
 
Show complications induced by unsteady heating and 
cooling. 
 
Summarize. 

Outline of Talk 
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Measurements are needed to validate CFD tools. 

A widely used method is the thermochromic liquid crystal 
technique. 

Surface 
temperature is 
measured as a 
function of time. 
 
The heat transfer 
coefficient is then 
inferred from 
either 1-D or 0-D 
exact solutions.  26 
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•  How good are the assumptions for practical problems with highly 
variable h and Tbulk? 

•  Does the measured h under transient conditions match h under 
steady-state conditions? 

Approach 
•  Choose problems where h & Tbulk vary appreciably:  pin fins 
•  Perform 3-D unsteady RANS to get Twall = f(t). 
•  Use 1-D & 0-D exact solution to get hEFD. 
•  Assess hEFD with hCFD = q”wall / [Twall(t) – Tbulk] & with hCFD from 

steady RANS. 

Objectives are to determine: 

Assess Accuracy of Measurements of Heat Transfer 
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Test Problem:  staggered array of pin fins in a duct 
 (not drawn to scale) 

Assess Accuracy of Measurements of Heat Transfer 
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Air Plexiglass Plate 

Pin fins - Al 

Plate:  Plexiglass  

Air 

Pin fins 
- Al 

Air 

Total Cells = 4,139,030 (channel:  1501 along X, 35 along Y, 38 along Z from X = – L2 
onwards and 16 cells in Z upstream of X = – L2; pin fin: 111 in the azimuthal direction 
with 54,460 cell in each half pin; plate: total = 1,893,430 with 1,422 along X, 35 along Y, 
38 along Z. 
 

NOTE:  (1) y+ < 1 next to all solid walls.  (2) constant ΔY and Δr in solid next to air-solid 
interface. 

Formulation 
 

•  Gas Phase:  ensemble-averaged continuity, momentum (compressible 
Navier Stokes) and energy with thermally perfect gas, Cp k = f(T),  
Sutherland for m, and SST turbulence model (without low Re correction) 

•  Solid Phase:  Fourier law with constant ksolid 
 

Code : Fluent 13.0 
 

Algorithm 
 

•  Steady RANS:  COUPLED with 2nd order for pressure, 2nd order upwind 
for all other equations. 

•  Unsteady RANS:  2nd order implicit with 30 iterations per time step. 

NOTE:  PISO required excessively small time step sizes to be stable 
(blows up even with Δt = 10-5 seconds).  With the implicit coupled scheme, 
you can use 10-3 seconds and higher.  

htc = f(t) at a point far upstream of pin-fins 
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T is fairly uniform (Bi < 0.1) 

h is highly non-uniform! 
Thus, though Bi << 1, 0-D 
assumption is terrible. 
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Summary: 
 

1-D exact solution:   plexiglass plate 
•  |h-1D – h-CFD|/|h-CFD| < 5%   
•  |h-1D – h-steady CFD|/|h-steady FD| as high as 23% at locations 

checked 
 

0-D exact solution:   aluminum pin fins 
•  |h-1D – h-CFD|/|h-CFD| as high as 200% 
•  |h-1D – h-steady CFD|/|h-steady FD| as high as 200% 
•  0-D exact is good only if h around the object is nearly the same, 

which is untrue for pin fins. 

Assess Accuracy of Measurements of Heat Transfer 
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Summary:   Nux = hx/k = f( T_wall, Re_inlet, Pr_inlet, x/D )  

23 

Assess Accuracy of Measurements of Heat Transfer 
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The minimum in Nu shifts downstream with higher wall temperature. 
Re = f(Tb) varies by by up to 40% from inlet to x/D = 100.    



ReInlet = 15,000  Tinlet = 700C  Twall = 400C  Pb = 1bar 



ReInlet = 150,000  Tinlet = 4000C  Twall = 9000C  Pb = 
25bar 
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Show challenges from two validation studies. 
 
Assess the accuracy of a measurement technique widely 
used to generate benchmark data to validate CFD. 
 
Contrast conjugate vs. non-conjugate CFD 
analysis in the predicted heat transfer. 
 
Show complications induced by unsteady heating and 
cooling. 
 
Summarize. 

Outline of Talk 

DoE – NETL & Ames Laboratory 



Conjugate vs Non-Conjugate CFD (Mikro) 

Side View 

Solid 

External Surface 
hext  = Varied,  Text = 1755 K 

Interface Between Solid  
and Fluid Domain 

Fluid: Air 

Outlet 
Pout = 25 bar 

Inlet 
Pin  = Varied, Tin = 

675 K 

4 mm 1.43mm 

49 mm 3 mm 
6.65  
mm 

2.6  
mm 

6.75  
mm 

2.0  
mm 11.55 mm 

Direction of Flow Twall = 1,173 K if non-conjugate 



Conjugate vs Non-Conjugate CFD (Mikro) 
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With conjugate CFD, Tb can be 
higher than the local surface 
temperature so that h can be 
huge or negative!  Is h the right 
way to look at problems with 
complicated geometries? 

Conjugate vs Non-Conjugate CFD (Mikro) 
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Show challenges from two validation studies. 
 
Assess the accuracy of a measurement technique widely 
used to generate benchmark data to validate CFD. 
 
Contrast conjugate vs. non-conjugate CFD analysis in 
the predicted heat transfer. 
 
Show complications induced by unsteady 
heating and cooling. 
 
Summarize. 

Outline of Talk 
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Objective:  Explore, develop, and assess jet-impingement configurations 
with and without conjugate analysis under steady and unsteady heating and 
cooling. 
Why?  Jet impingement provides one of the highest heat-transfer rates. 

Cooling Configuration: Jet Impingement w/o Cross Flow 

School of Aeronautics and Astronautics 



Problem Description 

A-A section 

d = 5 mm 
L = 30 d 
Sx =  4d 
Sy = 4d 
t = 0.2d 

Top 

Computational domain 

•  Solid:  super alloy (In 713C) - Cp, k = f(T) 
•  Fluid:  air  - ρ, Cp, k =  f(T) 
•  Inlet:   Ti = 673 K (400 °C) 
•  Outlet:  Pb = 2,533,125 Pa (25 atm) 
•  Summary of Cases: 

air 

Case II q”  
(w/cm2) Red Tc (°C) 

1 Steady 10 8K 400 

2 Steady 68 125K 300 

3 Transien
t 

Case II-1 → Case II-2 

Case I q”  
(w/cm2) Red Tc (°C) 

1 Steady 10 8K 400 

2 Steady 68 150K 400 

3 Transien
t 

Case I-1 → Case I-2 

Case III h  
(w/m2-k) Red Tc (°C) 

1 Steady 161 8K 400 

2 Steady 1090 150K 400 

3 Transien
t 

Case III-1 → Case III-2 

Cooling Configuration: Jet Impingement w/o Cross Flow 



Transient T Profiles on Heated Surface 

Th(°C) Case I Case II Case III 

     q”: 10 → 68 w/cm2,  
     Red : 8k → 150k 

q”: 10 → 68 w/cm2, 
Tc : 400 → 300 °C  
                  (Red : 125k) 

q”: 10 → 68 w/cm2, 
hh: 161 → 1090 w/m2-k  
                   (Red : 155k) 



Th(t) and Tc(t) at x/d = 3  

x/d = 3 on the bottom 
wall 

Th_initial 900.3 °C 

Th_max 945.3 °C 

ΔTh/ Δt 45°C / 0.9s 

x/d = 3 along the 
interface 

Tc_initial 896 °C 

Tc_max 922 °C 

ΔTc / Δt 26°C / 0.9s 

cooling 

heating 
x/d=3  

Tc (t) 

Th (t) 

T h
 (°

C
) 

T c
 (°

C
) 

heated side cooled side 

Case I :    q”: 10 → 68 w/cm2, Red : 8k → 150k 
Case II:    q”: 10 → 68 w/cm2, Tc : 400 → 300 °C, Red : 8k → 125k 
Case III:   hh: 161 → 1090 w/m2-k, Red : 8k → 155k 



It is critical that CFD truly solves the experiments, including 
the measurement technique in the validation process. 

Re = f( Tb ) = f(position along duct); Nu = f(Reinlet, Prinlet, heat-
transfer enhancement, distance from inlet) 

Need to rethink about Tb and h! 

Conjugate CFD enables understanding temperature 
distribution within the material, which is a strong function of 
the coupling between the internal and the external heat 
transfer. 

Unsteady heating and cooling require special attention to 
prevent over temperature. 

 School of Aeronautics and Astronautics 

Summary 


