proved highly successful in high-pressure combustion tests where record low emissions were obtained[2].

CFD Model

•Structured multi-block grid system was generated using the GridPro

• The grid system contained a little over **2.0**.**10**⁶ hexahedral cells

•The effects of turbulence on flow were modeled using realizable k –epsilon turbulence model.

•Combustion model: **31 step reaction mechanism** with **21 species** was used in the Flamelet combustion model.

Fig1 :A multi-block grid system for the air passages within the ML swirler **Problem Description**

•The air swirler was designed for target swirl number of 0.8. •The swirler was constructed from a stack of metal plates with air swirl passages etched into each plate that fed a 0.43" diameter "spray cup" that was 0.30" deep.

•The pressure swirl atomizer injected fuel at the bottom of the spray cup exposing the spray directly to the incoming swirling air.

Fig 2: Schematic of flow domain used in CFD

Investigating effective approaches for predicting spray flame location and NO_x emissions

Sudipa Sarker

Department of Mechanical Engineering, University of Texas at El Paso Erlendur Steinthorsson, PhD

Parker Haniffin Corporation, Mentor, Ohio

Abstract

An analysis was done to investigate different approaches for predicting spray flame location and NOx emissions using a Parker UEET injector consisting of a Macrolaminated air swirler with an integrated pressure swirl atomizer[1]. The air and fuel from the swirl cup discharged into a 3×3×12 in³ confining chamber. Three dimensional simulations were conducted of both non-reacting and reacting flows using Fluent. The full three-dimensional flow of air through the swirler and the downstream domain was modeled. At first, a non-reacting case was run using a fixed pressure drop for the air. A reacting case was then run using fixed airflow rate. For the non-reacting conditions, a constant pressure drop of 4000 Pa was applied across the swirler, with the exit pressure equal to 1 bar. (i.e., 4% pressure drop). A flamelet model was used as a combustion model and C₁₂H₂₃ was used as a surrogate for Jet-A fuel. An unsteady flamelet model was used in a post-processing step to estimate NO emissions. The Parker UEET injector

Summary

•Strongly swirling flow downstream of the exit and swirl induced vortex breakdown stabilized the flame.

•Temperature profiles for the reacting flow shows the maximum temperature is 2240 K and exit temperature is 1638 K with the burning zone positioned downstream of the cup. •An unsteady flamelet model was used as a post processing step to estimate NO emissions •NOx produced in high temperature regions and where residence time for fluid particles were long (consequence of flame tube setup). • NOx emissions were predicted to be 3.7 g-**NO/kg-fuel**

References

[1] Cai, J., Jeng, S.-M., Steinthorsson, E., "Experimental and Numerical Investigation of a Macro-Laminated Radial Swirler", AIAA 2003-0826.

[2] Tacina, R., Wey, C., Laing, P., Mansour, A., "Sector test of a low NOx, lean-directinjection, multipoint integrated module combustor concept,"ASME Turbo Expo2002.

