Hafnia-Based Thermal Barrier Coatings for Advanced Hydrogen Turbine Technology

<u>C.V. Ramana (PI)</u> Ahsan R. Choudhuri (Co-PI)

Program Manager: Briggs White, NETL, DOE

10/3/2012

Agenda

Introduction
Experiments
Synthesis
Characterization
Hot gas exposure

Results

Y₂O₃-HfO₂ (YSH)
Y₂O₃-HfO₂-ZrO₂(YSHZ)
Gd₂O₃-HfO₂ (GSH)

TBCs

- Multifunctional thick coatings of low thermal conductivity ceramic material
- Protect the metal component from extreme temperature
- •Allow to increase the turbine operating temperature
- Increase the efficiency

Evans et al., *Prog. Mater. Sci.* 46, 505 (2001); Nitin et al., *Science* 296, 280 (2002); D.R. Clarke, S.R. Phillpot, *Mater. Today* 8, 22 (2005)

10/3/2012

TBCs

<u>Current Standard: YSZ (Yttria Stabilized Zirconia)</u> Mainly due to ZrO_2 : refractory oxide, 'coatings' using well-known PVD technology, and mechanical stability and low thermal conductivity Y_2O_3 : stabilizer

<u>YSZ Problems</u>: Temperature Tolerance (1200 °C) and Durability (cracking and spallation due to phase and, hence, volume change)

<u>Goal (Ref: DE-FOA-0000031)</u>: Temperature Tolerance $\geq 1300 \,^{\circ}\text{C}$

10/3/2012

Hafnia-Based TBCs

HfO₂ exhibits:

- Higher melting point (2900 °C)
- Lower thermal conductivity
- Crystal structure and phase transformation behavior

m-HfO₂ 1700 °C t-HfO₂ 2700 °C c-HfO₂ $(2900 \circ C)$

Hafnia-Zirconia Phase Diagram

R. Ruh, H. J. Garrett and R. F. Domagala, *J. Amer. Ceram. Soc.* 51 (1968) 23

• These ceramics are miscible in all proportions and at all temperatures

Hafnia-Zirconia Phase Diagram

The phase transformation temperature is several hundred degrees higher than that for ZrO_2

► The difference between the heating transformation (m-t) temperature and the cooling transformation (t-m) temperature is smaller than that which occurs in ZrO_2 , i.e. the temperature hysteresis effect in HfO₂ is less pronounced than that in ZrO_2

► The established density change associated with the transformation in HfO_2 is much smaller than that in ZrO_2 which implies that the volume expansion and shear strain associated with the transformation in the former are smaller than those in the latter

Wang et al., J. Mater. Sci. 27 (1992) 5397

10/3/2012

Thermal Conductivity Reduction

$$\frac{\mathrm{d} \mathbf{Q}}{\mathrm{d} \mathbf{t}} = -\mathbf{K} \mathbf{A} \ \frac{\mathrm{d} \mathbf{T}}{\mathrm{d} \mathbf{x}}$$

K: thermal conductivity dT/dx: temp. gradient

$$\Delta T = \left(\frac{1}{KA}\right) \Delta x \ \left(\frac{dQ}{dt}\right)$$

Objectives

- Design and fabrication of hafnia-based coatings
- Characterization and evaluation of the coatings
- Look for:

Higher temperature tolerance Lower thermal conductivity Higher materials' strength Enhanced durability

EXPERIMENTS

10/3/2012

Materials

TBC Candidates:

 Y_2O_3 stabilized HfO_2 (YSH) Y_2O_3 stabilized $ZrO_2 - HfO_2$ (YSHZ) $(ZrO_2 - HfO_2 Mixed Composition)$ $Gd_2O_3 - HfO_2$ (GSH)

<u>Substrate(s)</u>:

- Ni super alloy(IN-738)
- SS-403
- Alumina

Target/Ingot Preparation

Tineous Olsen/Die Press

Targets/Ingots: (1) YSH (2) YSHZ (variable composition) (3) GSH (variable composition)

10/3/2012

YSH and YSHZ Composition

YSH: $7.5 \% Y_2O_3$: HfO₂

YSHZ

- YSHZ-1 : $(HfO_2 : ZrO_2 = 4:1)$
- YSHZ-2: $(HfO_2 : ZrO_2 = 2:1)$
- YSHZ-3 : $(HfO_2 : ZrO_2 = 1:2)$
- YSHZ-4 : $(HfO_2 : ZrO_2 = 1:4)$
- **YSHZ-5**: $(HfO_2 : ZrO_2 = 1:1)$

GSH Composition

 $Gd_2O_3 = 0-40 \text{ mol}\%$

 $Gd_2O_3: 4 \mod \%$ $Gd_2O_3: 8 \mod \%$ $Gd_2O_3: 12 \mod \%$ $Gd_2O_3: 20 \mod \%$ $Gd_2O_3: 38 \mod \%$

Balance HfO₂

Fabrication of TBCs and BC

PVD: Sputtering E-beam

BC (MCrAlY; M=Co/Ni)): E-beam APS

Target Synthesis

Precision

balance

Mortar

Hydraulic compressor

10/3/2012

Characterization

- XRD
- SEM
- EDS
- Laser 3D Microscope

10/3/2012

UTSR Workshop, Oct. 3-5, 2012

NEW

Thermal Cycling

10/3/2012

Impact Test Apparatus

Hot Gas Exposure

Hot Gas Experiments

Experimental parameters: Variable gas content: CH₄ to air ratio Gas impingement angle (0 and 90°) Variable exposure time

RESULTS

10/3/2012

Structure and Phase Analysis - YSH

XRD patterns of YSH coatings on Inconel-738

XRD patterns of YSH coatings on SS-403

M. Noor-A-Alam et al., ASME JNEM (2012), In Press

Morphology and Chemistry – YSH Coatings YSH on SS-403 YSH on IN738

Morphology – YSH Coatings

YHS + BC Inconel-738

10/3/2012

Structural and Phase Stability

High temperature XRD for YSH

No change *Phase and chemical stability to 1300 °C

Chemical Stability

EBPVD Samples

Thermal Conductivity - TDTR

Time-Domain Thermo-Reflectance

Conductivity- Sample Preparation& Data AnalysisFrequency-domain modelPotic of the in phase and out of phase

Al Reflective Coating

YSH/YSHZ/GSH

Substrate

<u>Frequency-domain model</u> Ratio of the in-phase and out-of-phase lock-in amplifier signals is calculated as a function of time:

$$-\frac{V_{in}}{V_{out}} = \frac{\sum_{-m}^{m} (\Delta T(m/\tau + f) + \Delta T(m/\tau - f)) \exp(i2\pi mt/\tau)}{i \sum_{-m}^{m} (\Delta T(m/\tau + f) - \Delta T(m/\tau - f)) \exp(i2\pi mt/\tau)}$$

m: an integer denoting summation over pump pulses, τ : time between unmodulated laser pulses (12.5 ns),

f: modulation frequency (9.8 MHz)

t: time delay (pump and probe pulses)

 ΔT :

delay times <t=100 ps were not considered

31

Thermal Conductivity Data of YSH Coatings

C.V. Ramana et al., ACS Appl. Mater. & Inter. 4 (2011) 200-204

10/3/2012

Thermal Conductivity – Photo-Acoustic Technique

$$\delta P = \frac{\gamma P_0 I_0 (\alpha_g \alpha_s)^{1/2}}{2\pi l_g T_0 k_s f \sin h (l_s \sigma_s)} \exp \left[j \left(\omega t - \frac{\pi}{2} \right) \right]$$

γ is the air specific heat ratio P_{o} , the ambient pressure T_{o} , the ambient temperature I_o, the absorbed light intensity $\omega = 2\pi f$, where f is the modulation frequency l_i , k_i and α_i are the length, thermal conductivity and the thermal diffusivity of the sample respectively. subscript i (=s, g) denotes sample (s) and gas (s) medium $\sigma_i = (1 + j)a_i$ is the complex thermal diffusion coefficient $a_i = (\omega/2\alpha s)^{1/2}$

For thick sample,

$$\delta P \cong \frac{\gamma P_0 I_0 (\alpha_g \alpha_s)^{\frac{1}{2}}}{\pi l_g T_0 k_s} \frac{\exp -l_s \left(\frac{\pi f}{\alpha_s}\right)^{\frac{1}{2}}}{f} x \exp[j\left(\omega t - \frac{\pi}{2} - l_s \alpha_s\right)]$$

l_s, thickness of the sample So, amplitude varies as:

$$\left(\frac{1}{f}\right) \exp\left[l_s\left(\frac{\pi f}{\alpha_s}\right)^{1/2}\right]$$

Phase varies as:

$$-l_s(\frac{\pi f}{\alpha_s})^{1/2}$$

YSH coatings on Inconel-738

M. Noor-A-Alam et al., Ceram. Inter. 38 (2012) 2957–2961

10/3/2012

Thermal Conductivity – YSH

M. Noor-A-Alam et al., Ceram. Inter. 38 (2012) 2957–2961
Mechanical Properties – YSH Coatings

Residual Stress Analysis

$$\frac{d_{\phi\psi} - d_0}{d_0} = \frac{1 + \nu}{E} \sigma_{\phi} \sin^2 \psi - \frac{\nu}{E} (\sigma_{11} + \sigma_{22})$$

 d_0 = Unstressed lattice spacing $d_{\phi\psi}$ =Stressed lattice spacing σ_{ϕ} = Stress component along the direction ϕ defined in the plane of coating Ψ = Tilt angle *E* = Young's modulus v = Poisson ratio σ_{11} and σ_{22} are in-plane principal stress components

Furnace Heating - YSH

12 hours

TEM Analysis: TGO-TBC Interface

* Bond coat enhances the TBC adhesion and oxidation resistance.
* Stresses due to CTE difference cause delamination or buckling at the TGO-TBC interface

High Temperature Impact Measurements

10/3/2012

High Temperature Impact Measurements YSH TBC//BC//IN-738

Oxidation

10/3/2012

Hot Gas Exposure

XRD

10/3/2012

UTSR Workshop, Oct. 3-5, 2012

45

Morphology (Under Hot Gas Exposure)

Set - 1

Stress Evolution – Comparison

Stress Evolution – Comparison

Structure and Phase Analysis

M. Noor-A-Alam et al., Surf. Coat. Technol. 206 (2011) 1628–1633

10/3/2012

YSHZ on Alumina Substrates

M. Noor-A-Alam et al., Surf. Coat. Technol. 206 (2011) 1628–1633

10/3/2012

Effect of Composition

Lattice Expansion Strain Exponential

M. Noor-A-Alam et al., *Surf. Coat. Technol.* 206 (2011) 1628–1633 Size difference of Y, Hf and Zr ions

Morphology – Effect of Composition

10.0kV 9.6mm x100k SE(U) 10/16/2010

500nm

Columnar Structure

M. Noor-A-Alam et al., Surf. Coat. Technol. 206 (2011) 1628–1633

10/3/2012

UTSR Workshop, Oct. 3-5, 2012

YSHZ

Thermal Phase Stability - YSHZ

M. Noor-A-Alam et al., Surf. Coat. Technol. 206 (2011) 1628–1633

Thermal Phase Stability - YSHZ

M. Noor-A-Alam et al., Surf. Coat. Technol. 206 (2011) 1628–1633

Mechanical Properties - YSHZ

EBPVD YSHZ

EBPVD YSHZ

YSHZ – Thermal Cycling

10/3/2012

Thermal Conductivity - YSH

10/3/2012

Thermal Conductivity -GSH

Thermal Conductivity - YSHZ

Mechanism

Extremely short phonon mean free path

M. R. Winter and D. R. Clarke, Acta. Mater. 54 (2006) 5051

GSH

10/3/2012

Structure and Phase

C.K. Roy, M. Noor-A-Alam , A.R. Choudhuri and C.V. Ramana, *Ceram. Inter.* 206 (2011) 1628–1633

Effect of Gd₂O₃ Composition

Increasing Gd_2O_3 increases the lattice constant; stiffens the lattice leading to slightly higher values of hardness of the coatings

Effect of Gd₂O₃ Composition -Morphology

10.0kV 9.4mm x100k SE(M) 6/23/2011
Effect of Gd₂O₃ Composition

Mechanical Properties - GSH

 $(a)_{10/3/2012}$

UTSR Workshop, Oct. 3-5, 2012

(c)

Hot Gas Exposure

4 mol%, impingement angle 90°

After test 1 (5 minutes) x15.0k SE(U) 6/27/201 10.0kV 9.6mm x60.0k SE(U) 6/27/2011 After test 5 (80 minutes) x60.0k SE(M) 7/26/201 After test 8 (145 minutes) 15.0kV 9.6mm x10.0k SE(M) 7/29/2011 10.0kV 9.7mm x60.0k SE(M) 7/29/2011

10/3/2012

Hot Gas Exposure

XRD patterns of 4 mol% GSH

Peak shift $(30.32 \circ - 28.87 \circ) = 1.45^{\circ}$ Lattice constant increased by (5.35 Å - 5.150 Å) = 0.25 Å

10/3/2012

10/3/2012

XRD patterns of 12 mol% GSH after exposure

Lattice constant increased by (5.40 Å - 5.15 Å) = 0.25 Å

AET

Summary and Conclusions

- Hafnia-based coatings were grown and their microstructure and phase/compositional stability is studied
- Columnar structure is seen in all the coatings; however, the Gd_2O_3 content influences the "size" in GSH coatings
- YSH and YSHZ coatings exhibit the cubic phase, which is stable to higher temperatures; GSH coatings exhibit either cubic or pyrochlore structure depending on Gd₂O₃ content
- Lattice expansion and mechanical property evaluation indicates there is a limit to play with the Hf-Zr-O composition (i.e., HfO₂ vs. ZrO₂ ratio in the matrix)
- Thermal conductivity and hot gas exposure studied indicating that there are compositions in YSZH and GSH that are promising with effective reduction

Acknowledgements

- DOE
- Dr. Briggs White
- cSETR
- M. Noor-A-Alam, Satya K. Gullapalli, Chandan K. Roy, Ernesto Rubio & Chris Bradley
- PNNL (Drs. Thevuthasan and Mark Engelhard)

10/3/2012

THANK YOU!

QUESTIONS/ COMMENTS?

10/3/2012 10/25/2011 UTSR Workshup, Sc. Workshup, Oct. 25-27, 2011

YSH - Effect of Substrate Material

Columnar Structure:

Mechanical Properties - YSHZ

(c)

Optical measurement of YSH on alumina

