Coating Issues in Coal-Derived Synthesis Gas/Hydrogen-Fired Turbines

> B. A. Pint Materials Science and Technology Division Oak Ridge National Laboratory Oak Ridge, TN 37831-6156

Research sponsored by DOE, Office of Coal and Power R&D Office of Fossil Energy (B. White, project monitor)

Acknowledgments

I. G. Wright - architect of ORNL syngas project (2005)
Task leaders: J. A. Haynes - coatings (Y. Zhang, Tenn. Tech.) K. Unocic - characterization (TEM, etc.)
K. Cooley - coating fabrication
G. Garner, M. Stephens - oxidation experiments

T. Lowe - characterization

D. W. Coffey - TEM specimen preparation, FIB

- H. Longmire, T. Jordan metallography
- D. Leonard EPMA

Ken Murphy, Howmet - X4 superalloy substrates Jacqui Wahl, Cannon-Muskegon - CMSX7,X8 substrates Anand Kulkarni, Siemens - 1483 superalloy substrates Ben Nagaraj, GEAE - N515 alloy, EB-PVD YSZ deposition S. Sampath, Stonybrook U. - HVOF,APS coatings

Research sponsored by: U. S. Department of Energy, Office of Coal and Power R&D, Office of Fossil Energy

12MWh/yr per U.S. resident From where? Source: U.S Energy Info. Admin. 4.2×10⁶ 4.1 coal? 40 Total 36.2% 30.9% 30 how' ·3.9 Natural Gas

Integrated gasification combined cycle (IGCC):

- similar to NGCC
- control NO_x,SO_x, Hg...

Kemper County, MS (Southern Co.) \$2.67 billion, ~60% CO₂ capture (oil recovery) 550MW, Siemens turbines, 2014 start

Edwardsport, IN (Duke Energy) \$2.88 billion (Carbon capture ready) 618MW, GE Energy turbines, 2012 start

De-rating of syngas turbines

Current project: more durable coatings

- coal-derived synthesis gas or syngas
- syngas turbines operating ~100°F(C?) less
- eliminating de-rating will improve efficiency

Reasons for de-rating*:

- higher water vapor content (fuel+diluent) (~10vol.%H₂O for natural gas vs. 30-60%)
- higher S levels (imperfect syngas cleanup)
- increased deposits
- syngas lower caloric value: higher fuel/air
 5-10X more fuel, magnifying impurities

*See Gibbons & Wright, "A review of materials for gas turbines firing syngas fuels," 2009 ORNL report & *International Journal of Hydrogen Energy* 32 (2007) 3610

TBC requires "perfect" scale adhesion

Ni-base Superalloy

Spallation of the scale has catastrophic effect (loss of YSZ)

scale is key to extending coating performance/reliability

Failure assumption:

- Many possibilities but when other problems corrected the "weak link" will be the metal-scale interface

- Thinner scale more "strain tolerant" – less strain energy

Focus on alumina scale growth and adhesion

Outline

FY10 (initiated 3 related "pre-competitive" tasks)
Task 1: water vapor effects
Task 2: superalloy dopant effects
Task 3: characterization

FY12

Task 1: repeating results from first 2 groups
Two issues: Dry vs. Wet and Wet vs. Wetter
Task 2: Completed, no significant benefit in X4
Task 3: dopant & H₂O effects on alumina scale
Task 4: New compositions and processes

- model bond coating (NiCrAIX) alloys
- low Re superalloys

FY13

Future directions

Recent Presentations

8th Int. Charles Parsons Conf. (Sept. 2011, UK)
Effect of water vapor content on TBC lifetime (publication in *Materials Science and Technology*)

ICMCTF (April 2012, San Diego)

- Effect of Water Vapor on the 1100°C Oxidation Behavior of Plasma-Sprayed TBC's with HVOF NiCoCrAIX Coatings

- Effect of Water Vapor on Thermally Grown Alumina Scales on Bond Coatings

(publication in *Surface & Coatings Technology*, Dec. 2012)

Advanced Materials and Processing (May 2012 issue)

- Effect of water vapor content on TBC lifetime

Microscopy & Microanalysis (August 2012, AZ)

- Microstructure and Chemistry of the Oxide Scale and Ptcontaining Coatings Deposited on Superalloy N5

Superalloys 2012 (Sept. 2012, PA)

- The Effect of Water Vapor and Superalloy Composition on Thermal Barrier Coating Lifetime (Proceedings)

Several TBC groups investigated (3 YSZ samples per condition + 1 without YSZ)

Group	Alloy	Bond coating	Top coating	Comment
1	N5	Diffusion $\beta/\gamma+\gamma'$	EB-PVD	"quick start"
2	X4±RE	HVOF Y±Hf	APS	RE/H ₂ O effect
3	N5/N515	Diffusion $\beta/\gamma+\gamma'$	EB-PVD	repeat/low Re
4*	1483/X4	HVOF YHf	APS	rougher,1483
* 5 YSZ samples per condition + 1 without YSZ				

HVOF: High velocity oxygen fuel (plasma spraying) EB-PVD: electron-beam physical vapor deposition APS: Air plasma spraying N5 - GE SX (single crystal) ~3 wt.%Re; N515 - 1.5%Re X4/1483 - Siemens recommended

Does water vapor explain de-rating?

Motivation for Task 1 on water vapor:

- Experiments done in dry O₂ or air convenience
- All turbines contain some H₂O
 - Natural gas 10-15 vol.%
 - Syn. gas ~30%
 - Hydrogen ~60%

higher levels with diluent

 Recent literature discussion on H₂O effect on TBC Anomaly of testing without H₂O Negative effect on lifetime when H₂O added Syngas-firing question:

What is difference in TBC lifetime when H₂O increased from 10% to 30%-50%? (not dry vs. wet, but wet vs. wetter)

Well controlled coating procedures 16mm disks: single crystal substrates (all at.%): N5: 13.3AI,8Co,8Cr,0.9Re,70Y-17S-540Hf-132Zr X4: 13.0AI,10Co,8Cr,0.9Re,1.2Ti,17S-270Hf

ZrO₂-Y₂O₃ coated (1 side) <u>1. N5, Pt diffusion/EB-PVD</u> β: CVD at ORNL (7 μ m Pt) γ-γ': 7 μ m Pt, 2h, 1175°C

2. X4, HVOF/APS

MCrAIY & MCrAIYHfSi: 41Ni,18C0,16Cr,23Al,0.4Y or 0.4Y, 0.07Hf, 0.65Si

Oxidation testing: 1h cycles (10min cooling) 1150°C or 1100°C: dry O₂, air + (10,50,90%) H₂O Characterization: Laser & optical profilometry (R_q) Metallographic cross-sections, EPMA, PSLS...

TBC Group 1: more effect on β life 1h cycles, 1150°C, air with 10-90 vol.% H₂O

 γ - γ ' Pt diffusion: no statistical change in life

Higher H₂O: not what I expected 1h cycles, 1150°C, air with 10-90 vol.% H₂O

 γ - γ ' Pt diffusion: lower Al, expected H₂O problem

Difficult to assess thickness/roughness differences More quantitative method needed to compare

Failed TBC specimens plotted versus exposure time Standard deviation shown

Thicker oxide with 10% H₂O Average of 40 measurements from SEM images

Similar thicker oxide formed with and without YSZ Rate similar in both cases

Higher H₂O - no further trend Average of 40 measurements from SEM images

Oxide not thicker with higher water vapor content

Box plots better represent data Box of same 40 measurements from SEM images

Not much statistical difference between two cases

TBC Group 3: in depth repeat 1h cycles, 1150°C, air with 0 & 10 vol.% H₂O

- New: Superalloy composition (X4 1%Ti, N515)
 - similar lifetime with X4 substrate, no Ti debit
 - higher Hf (2000 ppma) in N515 increased lifetime
 - observed higher life with and without Pt

New data: no H_2O roughness effect β coating: 4th (no YSZ) specimen cut in half

1150°C, 2102°F

10%H₂O: 340 cycles

bars: standard deviation of 6 lines or 5 areas

Previously: Observed large difference with H_2O for β Specimens from different batches, test in 2 rigs No mechanistic reason for such an effect Both X4 (NiPtAI) and N515 (NiAI) showed little effect

Effect of lower temperature 1h cycles, 1125°C, air with 10 vol.% H₂O

1125°C: reduced temperature to lower rumpling

- 4.5X higher life than 1150°C
- Pt increased life by 40%

1125°C: did not eliminate rumpling 4th (no YSZ) specimen cut in half (in progress)

Specimens stopped after 1000 cycles (TBC 1400-1950h)

- similar roughness for NiAI and NiPtAI on N5
- somewhat lower roughness in dry air vs. wet air

Group 3: stress measurements too Residual stress in alumina by PSLS

Same specimen used for roughness (no YSZ, cut in half) 1150°C - NiAl on N515 (high Hf): little H₂O effect - NiPtAl on X4: lower stress in dry air

1125°C: no effect of Pt on stress In progress: alumina residual stress by PSLS

Same specimen used for roughness (no YSZ, cut in half) 1125°C - N5 with NiAl/NiPtAI: same stress Data still being crunched for 1125°C dry air exposure

Next gen. stress measurements PSLS measurement as a function of location

NiAl on N515 after 5h at 1150°C in dry air

wet vs. dry air histograms

PSLS identified alumina phase

Theta map: 1h

5h

Water vapor stabilized faster growing θ -Al₂O₃

N5 NiPtAl 1125°C wet air

Initial θ-Al₂O₃ explains thickness Alumina thickness measured from SEM images

Increase due to initial faster-growing θ -Al₂O₃ formation

3D microscopy links stress/location Keyence examined same location as PSLS

- Can link stress and deformation as a function of time
- Similar analysis done for wet and dry air
- Supports hypothesis that coating grain size affects rumpling (Dryepondt): small grains "shrink and sink"
- Last step: microstructure at key locations (FIB)

Are doped superalloys a solution?

Motivation for Task 2 on doped superalloys:

Difficult to develop/commercialize new alloy/coating

- is there a solution available?

Cannon-Muskegon has commercial CMSX4+Y,La

- reported to increase TBC lifetime by 2-3X
- little independent verification
- little mechanistic understanding
- Proposed Impurity flux mechanism for S,RE:

Three alloys & one coating examined CMSX4: 6-7at.%Cr-9-13AI-1Re-10Co-2W-2Ta-1Ti

MCrAIYHfSi (PWA286) by high-velocity oxygen-fuel 41at.%Ni-18.4Co-16.2Cr-22.9Al-0.39Y-0.07Hf-0.65Si

 $\frac{1h \text{ cycles:}}{1100^{\circ}\text{C}}$ flowing, dry O₂ or air + 10, 50% H₂O

<u>100h cycles:</u> 1100°, air+10% H₂O

Group 2: no Y/La benefit in X4 Two bond coatings on CMSX4 + APS YSZ

30% drop in lifetime in 10% H₂O for both bond coats No increase in lifetime with Y/La addition to CMSX4

100h cycles increased lifetime 1100°C: two bond coatings on X4-1 + APS YSZ FY12 Milestone

bright areas delaminated in thermal flash at 42 cycles

Cycle more representative of land-based turbine 100h cycles in tube furnace with slow heat/cool Results support 1h accelerated testing

HVOF characterization: few trends Interdiffusion and oxide thickness on both sides FY12 Milestone

Subset of large number of HVOF specimens Since many specimens fell within scatter, not all specimens were examined

Conclude doped superalloy task:

- No evidence of Y/La benefit in these tests
- Y+Hf bond coat more effective benefit Increased lifetime compared to MCrAIY
- Perhaps, Y+La benefit clearer with higher S Low S superalloys are now more common Also, Howmet X4 contained higher Hf,
 which may overshadow Y and La effects
 Expect more effect with diffusion coatings

Characterization helps understanding Motivation for Task 3 characterization:

- Developing mitigation strategies is very difficult without understanding the role of dopants & H_2O
- Strong interest in the alumina scale but typically $<10\mu$ m in thickness
- Imaging from light microscopy to SEM to TEM
- Also PSLS and roughness

FY12 tasks:

- complete TBC Group 1 characterization
- complete TBC Group 2 characterization
- broader characterization on Group 3 (PSLS...)
- continue characterization of model alloys

TEM: variable scale thickness on β After 900 1-h cycles at 1150°C

900h in dry O₂

Martensitic β apparent Only minor changes in microstructure

TEM: thicker oxide on γ-γ' in H₂O After 1500 1-h cycles at 1150°C

Columnar grains typical of γ - γ ' coatings Thicker oxide, otherwise few differences

TEM: model NiCrAl+La,Hf Oxidized 100h at 1100°C in dry O₂

Task 4 focused on solutions for syngas Motivation for task:

- Other tasks concern understanding
- This task added to develop solutions
- Also to investigate new coating technologies (often difficult to get specimens)
- FY12 work:
 - more oxidation resistant MCrAIY coatings: initial work on model NiCrAIX cast alloys invention disclosure filed
 - different superalloys (N515, 1483)
 - N515, X7, X8: lower Re
 - 1483: higher Cr (hot corrosion resistance)

Higher temperature used for short time evaluation Bar graphs at 200 cycles do not reflect behavior

Next step is to make powder/spray coatings

Bare superalloy tests in progress 1h cyclic oxidation testing at 1050°-1150°C

1050°C example All similar, little Re effect 1483 poor (low Al)

Comparison of low Re alloys with conventional 2nd generation single crystal alloys

FY13 directions

FY10 (initiated 3 related "pre-competitive tasks)

- (1) water vapor effects
- (2) superalloy dopant effects
- (3) characterization

FY13

Task 1: Broadening environment effects Including CO₂ and SO₂ (late FY13 or FY14)
Task 2: Effect of superalloy composition Higher Cr and lower Re effects (market pull)
Task 3: Characterization (continue key role)
Task 4: New bond coatings/processes
Validate model alloy performance in coating
Work with industry for new directions
OEM/utilities Serich deposits new processes

- OEM/utilities, S-rich deposits, new processes

Summary-take away points

Higher water vapor does not appear to explain de-rating although H₂O effect is detrimental

- continue to study role of H₂O on TBC life
- more relevant/better understanding

Doped superalloys do not appear to be a solution - conventional SX alloys may have improved

Co-doped (Y+Hf) bond coatings appear to be very effective and should be further explored

Promising solution for new bond coating

Scope evolving to include performance of new superalloys and effect of CO₂ and SO₂

CLEAN COAL. COOL.

backups

TBC Group 4 in progress

Coatings (w/YSZ) received from Stonybrook

- mostly 1483 substrate, some X4 to compare
- only HVOF NiCoCrAlYHfSi bond coatings
- APS top coating on one side
- increased roughness compared to Group 2
- closer to industry standard
- 5 specimens per condition (3 for Group 2)

Experiments (complete Task 1 on H₂O effect)

- 1h cycles 1100°C: 0%, 10%, 50⁻%H₂O (compare to previous work)
- 100h cycles 1150°C: 0%, 10%, 50%H₂O (increased temperature to reduce test time)
- 1h cycles 1150°C: 0%, 10% (link experiments)

1100°C used for MCrAIY coatings

Thermal expansion difference among coating classes

MCrAIY bond coatings (industry standard) X4: 13.0AI,10Co,8Cr,0.9Re,1.2Ti,17S-270Hf MCrAIY & MCrAIYHfSi: 41Ni,18C0,16Cr,23AI,0.4Y or 0.4Y, 0.07Hf, 0.65Si

Morphology of HVOF MCrAl Epoxy-mounted polished cross-sections after failure

10%H₂O

Relatively small β denuded zone Low roughness of R_a~5.5, not industrial standard

Scale on HVOF MCrAl

Epoxy-mounted polished cross-sections after failure

10%H₂O

Rougher areas: more alumina scale + YSZ attached ~100% APS YSZ spallation leaves little to analyze

γ+γ' coatings: more uniform scale Backscattered SEM, 1-h cycles at 1150°C

dry O₂, 1,500h

10%H₂O, 1,500h

50%H₂O, 1,500h

90%H₂O, 1,500h

Relatively uniform oxide formed on $\gamma + \gamma'$ coatings More variation for scale formed in 0% H₂O: spall?

Coated X4-2 - found Ti in scale Oxidized for 100h at 1100°C in dry O₂

Demonstrates that Ti diffused through coating (No Ti in MCrAIYHfSi coating, 1% in X4-2)

50% H₂O: no effect on TBC life 1100°C: two bond coatings on X4-2 + APS YSZ

Similar to diffusion coatings, higher water vapor content did not reduce TBC lifetime. Characterization in progress

FY12-13 milestones

FY2012

- Complete TBC lifetime testing at two different cycle frequencies. (Met).

- Complete characterization of the coated CMSX4 variants (with and without dopants) (Met).

3. Complete initial assessment of model alloy oxidation results (Progressing, 9/30/12). FY2013

1. Complete oxidation evaluation of bare superalloys with higher Cr or lower Re (12/31/2012) 2. Complete TBC lifetime testing and characterization in the presence of CO_2 and H_2O (5/31/2013) 3. Fabricate bond coatings with new composition and complete initial cyclic oxidation evaluation (9/30/2013)

Model alloys show benefit of "X" 1h cyclic oxidation testing at 1100°C

Testing in dry and wet air

La/Hf compositions also worked well without X

Path forward for MCrAIY+X

Invention disclosure filed in June 2012

- patent review being conducted
- more data needed to file strong patent

Next steps:

Identify vendor, obtain non-disclosure agreement Make two powders, spray coatings (FY13 funds) Test coatings, compared to current coatings

Change in Al₂O₃ morphology on γ - γ ' Plan view SEM, all 1,500, 1-h cycles at 1150°C dry O₂ (0% H₂O) 10%H₂O

 $50\%H_2O$ $90\%H_2O$ Spinel(?) at surface except $0\% \rightarrow$ spall at 0%(?)

EPMA: no clear differences Line traces from specimens without YSZ

 γ - γ ' coatings (1500h)

β coatings

No apparent effect of water vapor on interdiffusion β coatings exposed for different times at 1150°C