

SIEMENS

FTT Aerothermal Research in Support of DOE Initiatives/Goals

Outline

- Oxy-fuel turbomachinery development (with Clean Energy Systems & Siemens)
- Demonstration of enabling Spar-Shell cooling technology in gas turbines
- Sealing and leakage control technology

Program goals and objectives

- Objective: Design, manufacture & test a commercial-scale oxy-fuel turbine (OFT) for use in industrial O-F plants that:
 - Capture and sequester 99% of produced CO₂
 - Operate at competitive cycle efficiencies
 - Utilize diverse fuels
- Schedule: 48 months
 - FY2011 thru FY2014
- Development partners
 - Clean Energy Systems, Siemens Energy, Inc., Florida Turbine
 Technologies, Inc. and Integrated Engineers and Contractors Co.

Oxy-fuel cycle – Zero emission power plant

Adaptation of existing turbomachinery for IPT

- Originally a W251 (SGT-900) gas turbine
- Remove compressor, convert combustors to O-F reheaters
- Converted to a 150 MW oxy-turbine
- CO₂ by-product is a revenue stream

Transformation of SGT-900 to OFT-900/SXT-150

SGT-900 air-breathing gas turbine Conventional Combustors Air Cooled Turbine Air Inlet **Axial Compressor** Manifold **Thrust Balance** Piston & Seal Set Flow Guide & Inlet Case Shaft Cover Drive Gas Covered & Turbine Exit Guide Vanes Steam/CO2 Inlet Plenum IGVs Removed Steam/CO2 Reheat Combustor Cooled Turbine

OFT-900/SXT-150 oxy-fuel intermediate pressure turbine

FTT reheat combustor manufacture

4 October 2012

Assembled reheat combustor received from FTT

Secondary flow system routing/modeling

Whole engine thermal/structural modeling

Status

The program:

- CES has partnered with Siemens Oil & Gas and FTT to retrofit an SGT-900 to a highly efficient OFT under the DOE-CES program.
- Will demonstrate a full-scale OFT at reduced loads, off the grid
- Is currently one year ahead of its 4-year development schedule

Once successful:

 The OFT can be deployed in several applications - all offering clean, reliable power without pollution

Equipment arrival in Bakersfield, CA August 27, 2012

FTT

Transport to Kimberlina via heavy hauler 8/27/12

FTT

OFT installed on foundation at KPP September 13th

Outline

- Oxy-fuel turbomachinery development (with Clean Energy Systems & Siemens)
- Demonstration of enabling Spar-Shell cooling technology in gas turbines
- Sealing and leakage control technology

Program goals and objectives

- Develop and test commercial prototype:
 - First-stage turbine airfoils requiring significantly less cooling flow than the current state-of-the-art (SOTA)
- Proposed cooling approach addresses durability concerns associated with turbine inlet pressure and temperature increases desired for future gas turbines
- Open door to commercialization of this new technology in both Fframe and other highly cooled turbine airfoil applications

Enabling technology for future gas turbine-based power systems

 DOE Office of Fossil Energy-sponsored hydrogen and oxyfueled turbomachinery programs

Conventional cooling design

- Philosophy/practice limits cooling potential
- Impingement pressure ratio typically near constant around airfoil
- Post-impingement pressure set high enough for coolant outflow to leading edge

What is it? - Alternative to existing state-of-the-art

- FTT sequential-impingement cooling scheme based on new insert design improves cooling (reduces cooling flow 40%)
- Provides path for implementation of next generation materials
- Optimized thermal/structural arrangement allows increased firing temperatures and improved efficiency

Ref: U.S. Patent #7080971, "Cooled Turbine Spar Shell Blade Construction, J. W. Wilson and W. Brown, July 25, 2006.

Commercialization program: DOE, FTT & Siemens

- Use existing (proven) 1st stage turbine vane casting as the shell
 - No rotating mass concerns
- Sequential-impingement cooling provided by FTT spar insert
- Demonstration will install 6-8 parts in a rainbow arrangement with bill-ofmaterial parts

3D thermal analysis results

Average surface temperature increased less than 10°C while cooling flow was reduced 35% (Relative to current hardware)

Temperature

3D structural analysis results

Stresses and predicted cyclic capabilities are consistent with baseline design

Design validation and verification activities

Basic cooling flow and heat transfer performance evaluation via experimental test prior to engine installation

- Impingement heat transfer test (FTT/UCF)
- Cold flow and pressure drop testing of actual engine hardware
- Seal leakage test (FTT)

Management of manufacturing/fabrication risk

- Production of engineering mockups and models
- Manufacturing, fabrication and assembly trials

Health can be monitored during engine test to assure product integrity

- Temperature and pressure sensors
- Frequent borescope (visual) inspection

Purpose of heat transfer testing

- Downstream rows of large scale jet impingement arrays suffer from crossflow
- This negative effect can be mitigated by increasing the crossflow area

Bunker. US Patent No. 6,000,908

Impingement heat transfer testing performed at UCF*

^{*} University of Central Florida – UTSR Fellow Roberto Claretti under direction of Prof. Jay Kapat 4 October 2012 Copyright 2012, Florida Turbine Technologies, Inc. All Rights Reserved.

Assembled, instrumented test article

Smooth channel checkout case

Impingement geometry

Case	z/D	x/D	x _c /D	N_x	y/D	y _c /D	N_y
Validation	3	3	63	20	8	32	4

Impingement validation test results

Spar fabrication/bonding trials were successful

- Bond trial used a dead weight load
- Essentially 100% complete bonding
- External faying surfaces have concave faces
- Lesson learned:
 - Base material grain boundaries next to bond surface exhibited solid boride precipitation
 - Process improvement measures identified

Commercialization program schedule

<u>DOE – Supported Program Designs, Develops, Manufactures,</u>

<u>Instruments and Delivers Demonstration Hardware for Engine Test</u>

2011 2012 2013 Design/Development of Spar-Shell Cooling Technology into an Existing **Production Engine Procurement of Partial Engine Set (10 Parts** Total. 6 Parts Delivered to Engine) of **Modified Production Engine Turbine Vanes with Enhanced Spar-Shell Enabling Cooling Technology** Instrumentation, Assembly and Initial **Engine Test/validation of Modified Production Engine Turbine Vane with Engine Demo Enhanced Spar-Shell Enabling Cooling Technology**

Program on track to test Spar-Shell late next year

- Test vehicle and window of opportunity for Spar-Shell insertion identified
- Design is nearly complete
- Long-lead hardware (castings) have been released to production
- Bench-level testing and dimensional inspections are validating the hardware prior to full-scale engine test
- Hardware will be instrumented with thermocouples and pressure taps

Outline

- Oxy-fuel turbomachinery development (with Clean Energy Systems & Siemens)
- Demonstration of enabling Spar-Shell cooling technology in gas turbines
- Sealing and leakage control technology

 Joints between mating surfaces

R & D needs

Control leakage while permitting relative movement between parts

R&D Needs:

- Leakage accounts for ~25% of parasitic losses in gas turbine engines
- Turbo machines are inherently leaky
 - Comprised of many parts having joints, gaps and clearances
 - Static-to-static interfaces
 - Static-to-rotating interfaces
- Pressure difference maintained across these orifices to control environment

Anticipated seal misalignments considered in test plan

Static seal rig constructed to test leakage flows

Initial results = Very encouraging

Air-riding seal technology for advanced gas turbines

Increased Clearance: $P_H(A_1) + P_L(A_2) > P_C(A_3) + P_L(A_4)$ Net Force =

Existing test rig achieved surface speeds up to 620 ft/sec

- Proof-of-concept demonstration
- Measured leakage to date represents very small (~0.002") effective gap at various pressure ratios
- Additional testing to extend and expand database

Summary

- FTT is working closely with CES and Siemens to develop oxy-fuel turbomachinery.
- Spar-Shell turbine components incorporating sequential-impingement cooling are on target for first test late next year.
- FTT has taken a proactive role in the development of advanced sealing technologies.

Acknowledgements

Department of Energy
National Energy Technology Laboratory

Siemens Energy

Clean Energy Systems, Inc. Power Without Pollution

FTT Aerothermal Research

Thank You & Questions?

