

Center Electrode Life Test of an Iridium Alloy

Alloy

Prepared by: M. L. Busche, University of North Dakota

Introduction:

This summer I worked at Woodward in Greenville, SC. Woodward integrates leadingedge technologies into fuel, combustion, fluid, actuation, and electronic control systems for the aerospace and energy markets. A few of the products manufactured at the Greenville location are: injectors, nozzles, swirlers, and igniters.

Background:

- Conditions inside an Industrial Gas Turbine (IGT) engine vary depending on a variety of factors: fuel, emissions, materials, etc.
- Sometimes igniters spark when wet (water or fuel)
- Wet igniters erode at a higher rate than dry igniters

Purpose of test:

■ The purpose of this project was to perform a dry and a fully submerged (wet) spark test on a production igniter with a center electrode made of an Ir alloy.
 A comparison was then made between the resultant center and a production part.

Center Electrode

Outer Electrode

Figure 2. Igniter Tip

Figure 3. Dry Spark Test - Apparatus

Figure 1. Igniter

Dry Spark Test:

- Sparks controlled using exciterIgniter encased in tube
- Cooled by air
- Sparks counted using fiber optics
- Test terminated after 567,838 sparks

Figure 4. Wet Spark Test – Apparatus, Inside View

Figure 5. Wet Spark Test – Apparatus, Outside View

Wet Spark Test:

- Sparks controlled using exciter
- Sparks counted using an oscilloscope displayed a voltage output from a10:1 current transformer, Pearson Model 110 Current Monitor
- Igniter fully submerged in JP4 fuel
- Expandable bellows used to hold fuel/igniter as well as contain the sparks
- Test apparatus contained in an explosion rated steel enclosure, shielded with argon gas
- Test terminated after 126,028 sparks

Results:

- **Dry Spark Test**
 - Majority of material lost came from outer electrode
 - ☐ Ir alloy outperformed previous baseline life test
- **■** Wet Spark Test Baseline
 - Baseline has a faster volumetric wear rate than new alloy, approx 2x faster
 - □ Larger diameter: 0.123" vs. 0.100"
 - ☐ Center electrode eroded to inside insulator
- **■** Wet Spark Test Alloy
 - ☐ Faster wear rate than dry spark, approximately 18 times faster
 - More wear on center electrode versus dry

Figure 6. Dry Spark Tip – End of Test

Figure 7. Alloy Wet Spark Test

– End of Test

Figure 8. Baseline Wet Spark
Test – End of Test

■ Appears that wear rate is a function of both material composition and geometry, not just linear function

