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Funding and performance dates 

Total budget: October 1, 2011…September 30, 2014 

DOE: $3,000K; OSU: $679K; ODOD: $500K 

BP1: October 1, 2011…September 30, 2012 

DOE: $898K; OSU: $219K; ODOD: $132K 

BP2: October 1, 2012…September 30, 2013 

DOE: $958K; OSU: $226K; ODOD: $181K 

BP3: October 1, 2013…September 30, 2014 

DOE: $1,144K; OSU: $233K; ODOD: $187K 
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Partners 

NETL: José D. Figueroa, project manager 

OSU: 
Hendrik Verweij:  Materials Science:  PI 

ceramic synthesis, transport, structure analysis 

Prabir K. Dutta:   Chemistry:     Co-PI 

Winston W.S. Ho:  Chemical Eng.:    Co-PI 

polymer synthesis, module fabrication, testing 

Gradient Technologies: 
Stephen J. Schmit: Chemical Eng.:    Systems 

AEP: 
Daniel M. Duelmann: Consultant for plant operation 

Trisep Corporation 
Peter A. Knappe:  Consultant for manufacturing 



Overall project objectives, conditions 

Membrane-based process for: 

Cost-effective capture of CO2 from flue gas: 

<35% increase of the cost of electricity 

>90% capture, >95% purity at 150 Atm total pressure 

2 stage process with air sweep: 

combustion [CO2] = 18.5…25%; cost optimum at 22.5% 

Limits membrane concept to: 

Mass-manufactured polymer-supported membranes 

Permeance >3,000 GPU; selectivity >150 

Permeance is CO2 flux/pressure difference 

Selectivitity is for CO2 w.r.t. N2 
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Ideal vs real membrane separation 

Ideal membrane separation: isothermal → free! 

kinetic gas permeance: <108 GPU; selectivity (α): <∞ 

capillary condensation: <107 GPU; selectivity (α): <50 

diffusion: <105 GPU; α polymers: <100; inorganics: <∞   

thin, selective permeable | thick, less selective, defects 



Process concept 

 

 

 

 

 

 

 

Stage 2: fresh air sweep maximizes driving force 

Stage 1: high f, α allows for 10…15 kPa evacuation 
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Supported hybrid membrane concept 

Gutter/modification layer 
(X = <500 nm, Øp = 3…4 nm) 

Polymer support 
(X = ~30 μm, Øp = 20-1000 nm) 

Defect abatement cover layer 
(X = <200 nm, dense polymer) 

Micro-porous membrane 
(X = <200 nm, Øp = <1 nm) 

≈ ≈ 

≈ 

woven backing 
(X = ~200 μm) 
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X = thicknes; Øp = pore diameter 



Synopsis of project scope 

BP1/YR1: 

Lab scale synthesis, characterization 

Ceramic supports for quantitative parameters 

BP2/YR2: 

Lab scale membrane optimization 

Bench scale membrane fabrication 

BP3/YR3: 

Bench scale membrane optimization 

Demonstration 

Development guided by systems/costs studies 
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Baselines and success criteria 

For 50% CO2 on good, resistive ceramic supports: 

Zeolite Y:     f = 500 GPU; α > 100 

Modified γ-alumina: f = <3000 GPU; 50 < α < 150 

Success criteria for polymer supports: 

BP 1: f = 1000…3000 GPU with α = 50…100. 

BP 2: f = >3000 GPU with α = 50…100. 

BP 3: f = >3000 GPU with α = >200 

Ceramic supports: characterization, parametrization 
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BP1 work plan synthesis 

1. Smooth, highly permeable ceramic support  

2. Cover layer permeance >3000 GPU  

3. Crack-free inorganic layers on polymer  

4. Ceramic intermediate on polymer >3000 GPU  

5. Selection polymer support: PES 100…1000 kD  

PES is polyethersulfone 

6. Formation zeolite Y (selective material) <15'  

7. Building a mini-module  

8. Introducing the selective layer:  α > 15  
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(Precipitation synthesis) 

Dispersion by: 
Sonification 

Colloidal stabilisation 

Purification by: 
Screening, centrifugation 

(Support pre-treatment by): 

Reactive ion etching 

Deposition by: 

Film coating, filtration 

Consolidation by: 

Drying, rapid heating 

Common characteristics of deposition 



Highly permeable ceramic support 

For membrane deposition and 

transport studies 

Colloidal casting, sintering of: 

2 mm AA3: 3 μm α-Al2O3 1400 C 

ground and polished 

11 μm AKP30: 0.3 μm α-Al2O3 950 C 

300 nm γ-alumina; Øp=4 nm 

Boehmite, calcined at 600 C 

Permeance = 11,000 GPU 
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Crack-free ceramic layers on polymers 

Most cracks caused by: 

Excessive stretching 

Drying particle layers 

Drying cracks avoided by: 

Improving adhesion 

Improving spreading 

Decreasing thickness 

Increasing packing 

Internal lubrication 
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Highly permeable ceramics on polymer 

Permeable porous inorganic 

layers as intermediate layers 

and modification scaffolds 

1000 kD polyethersulphone 

polymer supports: 

highly permeable; thermally 

stable up to 150…200 C. 

Colloidal casting, drying of: 

420 nm AKP30: 0.3 μm α-Al2O3 

Without cover: 

With ~1 µm PDMS: GPU  
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Zeolite Y growth process accelerated 

Zeolite Y: one of the potential selective materials 

Commercial growth times: >>2 h ($10B market) 

For membrane deposition: <16 min required 

New dehydration method: <15 min 
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First module (non-selective demo) 

Spiral-wound with 1 µm polydimethylsiloxane on 

400 nm porous α-Al2O3 on 1000 kD polyethersulfone 
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BP1 work plan characterization, systems  

Characterization: 

1. Electron microscopy of 2D FIB cross-sections  

2. High-pressure sorption, dehydration studies  

3. Membrane transport at flue gas conditions  

4. Contact-less characterization by ellipsometry  

System studies: 

1. Preliminary OSU model in Aspen  

2. Implementing water management  

3. Implementing detailed membrane transport  
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Electron microscopy of FIB cross-sections 

Electron-transparent films; 

“perfect” 2D cross-sections 

for structure analysis 

Porous polymers difficult: 

instability, charging 

Improvements: 

modern equipment 

developing operator skill 

application thick Pt layers 
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Grown dense zeolite layer

2 µm



High pressure thermo-gravimetry  

Sorption isotherms for transport studies 

Confirmation that CO2 is active in water exchange 
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Zeolite Y, water-satured, measured at 30°C  



Spectroscopic ellipsometry 

Thickness, contactless during synthesis & use 

Composition from refractive index 

AKP30 α-Al2O3 on 1000 kD polyethersulfone: 
Thickness 410…430 nm 

Surface roughness 50…60 nm 

Intermix 50…100 nm 

n = 1.39 

Shows the quality 

of deposition 
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Plans for BP1 completion 

Growth of thin, selective zeolite Y layers 

Selective modification alumina layers 

Optimization/automation layer depositions 

Experimental design synthesis, pore activation 

Competitive H2O/CO2 sorption studies 

Transmission Electron Microscopy FIB films 

Ellipsometry of membrane activation/activity 

Continuation system studies  
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