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Motivation: Granular instabilities 
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Fluid Analogy: 
Continuous vs. Discrete 

Continuum perspective 

Molecular perspective 

Navier Stokes eqns Newton’s laws 



System of Interest: Granular Flow 

• The Homogeneous Cooling System (HCS) 
– No external forces 
– Periodic boundaries 
– No gradients in the hydrodynamic variables 
 

• Particle properties 
– Constant coefficient of restitution (e) 
– Monodisperse particles 
– No enduring contacts 



Background 
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Background 

Kinetic-Theory-based stability analysis: Garzó, 2005 
Mitrano et al., Phys. Fluids (2011) 
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Objectives 

Quantitatively assess Kinetic-theory-based 
predictions of instabilities via MD simulations 

 
• Clustering instabilities 

– MD vs. CFD theory solution 
 

• Effect of friction on instabilities 
– MD vs. linear stability analysis (LSA) of theory 

 



Molecular Dynamics 

• Input 
– System length scale (L/d) 
– Restitution coefficient (e) 
– Volume fraction (ϕ) 

• 3-dimensional domain 
• Hard sphere collision model 

– Binary, instantaneous collisions 
• Relevant Output 

– Particle positions & velocities 
 
 



MD: Fourier Analysis 

Goldhirsch, Tan, Zanetti, J. Sci. Comput. (1993) 

“Mass Mode” vs. wavenumber Particle positions (2D MD simulation) 

At 400 collisions per particle (cpp) 



MD: Fourier Analysis 
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MD: Fourier Analysis 
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MD: Fourier Analysis 
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MD: Fourier Analysis 
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CFD: Cluster Detection 

time 



CFD: Cluster Detection 

(%) e = 0.8 
ϕ = 0.1 
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Clustering Onset: CFD-MD-LSA 
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Types of Dissipation 

• Normal dissipation 
– Constant normal restitution coefficient  
    0 ≤ e ≤ 1 

 

• Tangential dissipation 
– Constant tangential restitution coefficient 
   -1 ≤ β ≤ 1 
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Types of Dissipation 

• Normal dissipation 
– Constant normal restitution coefficient  
    0 ≤ e ≤ 1 

 

• Tangential dissipation 
– Constant tangential restitution coefficient 
   -1 ≤ β ≤ 1 
 

VT 

VT β et 

No tangential impulse: 
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Elastic Results 

e = 1 
ϕ = 0.3 
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Extra note (not in original 
presentation) 

• Very strange behavior for nearly smooth and nearly perfectly 
(elastically) rough particles can be traced to the energy ratio and 
more directly the fact that we only allow for “sticking” collisions 
that depend on the relative tangential overall velocity. Highly 
rotating particle are caused to separate since the tangential 
component is so large giving to a large tangential impulse. (vortex 
motion is dependent on the tangential translation alignment). E_t is 
a tangential translational restitution coefficient that is well 
correlated to vortex motion- high et values hinder vortex formation. 
Next slide shows that the particle rotation is very high on the left 
side. As particle become more and more rough the tangential 
impulse is inherently larger. We briefly examine a friction model 
that allows for either sticking or coulomb-governed sliding collisions 
a few slides later. 
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Temperature Ratio  
(DEM-theory comparison) 
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Tangential Translational  
Restitution Coefficient (et) 
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Onsets normalized to  
smooth-particle value 
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Extra note 2 

• The et shown is not just averaged 
 

• First take absolute value of et 
• Take log10 
• Average 
• Raise 10 to the average 
• This is because we want et=0.1 and 10 to 

average to 1 not close to 5 



A Coulomb-friction model:  
Onset of vortices 
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Concluding Remarks 

• MD vs CFD vs LSA 
– Excellent agreement between kinetic theory and MD 

simulations 
– Small-gradient, molecular chaos assumptions of 

theory are not so restrictive 
– Nonlinear mechanisms are important for clusters 

• Frictional dissipation 
– All dissipation is not created equal 
– A frictional cooling rate alone does well  
 (other transport coef.’s neglect friction) 



Future Work 

• Increased system complexity 
– Polydisperse particles 
– Non-spherical particles 
– Fluid phase 
– Bulk flow 
– Improved dissipation model 
– Wall boundaries 
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