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Introduction 
• Harsh environment of coal gasification lead to rapid 

degradation of refractory which impacts reliability and 
economics of the process. 
 

• Harsh gasification environment makes it difficult to 
utilize the tradition insertion sensors to monitor the 
process and the refractory.  
 

• This project adopts an approach of using noninvasive 
ultrasound methods to provide real-time, in-situ 
information about the refractory temperature and 
thickness. 

 
 

Stages of refractory degradation [1]. 

 



Solution Strategies 
• Direct measurement : Develop hardened sensors that can 

withstand harsh environment for long time.  
 

– Heavy sheathing makes such devices less sensitive to dynamic 
changes in temperatures, which are important in the refractory 
life management since rapid temperature variations can 
introduce thermal stresses. 

•  Inferential approach: Indirect (secondary) measurements that are easy to obtain (T, 
P and compositions of in/out streams) are used with appropriate models to infer 
otherwise inaccessible operating parameters inside the reactor zone and the state of 
the refractory. 

– Few examples in gasification: reactor temperature reported in ppm of methane -- Tampa Electric 
IGCC Demonstration Project [3]. Economically appealing option. 

– Quality of inferences is affected by modeling errors and uncertainties.  
– Measurement accuracy, sensitivity, and response time compare poorly with direct 

measurements. 
 

• Direct measurements using non-invasive methods: Examples include optical and 
ultrasound measurements (e.g., T and gas composition during combustion [4]).   

Thermocouple protection 
system for gasifier 
application [2]. 



• Speed of sound is temperature dependent in gases, liquids, and solids. 
SOS can be obtained by measuring time of flight (TOF) of the test pulse:  

 
 
 
 
 

 
 
 
 
 

 
• Key difficulty: When temperature changes along the path of US 

propagation, the acoustic TOF measurements depend on  temperature 
distribution in a complex way: 
 
 
 
 

• Key uncertainty: How strong is SOS vs. T dependence? 
– The answer to this question determines achievable accuracy of temperature 

measurements.     

Acoustic Temperature Measurements 
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Estimating temperature distribution 
from TOF measurements 



• Create multiple partial reflections that give information about 
temperature distribution in different segments of the refractory.  
– The ability to create partial internal reflections and their spacing determines 

achievable spatial resolution. 
 

 
 
 
 
 
 
 
 

• Methods to create partial reflections:  
– Scatterers;  
– Change in US impedance;  
– Change in geometry 

Direct US Measurements of Temperature 
Distribution 



SOS as a Function of Temperature 



Experimental Setup: Transmission setup 
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Experimental Setup: Reflected signals 
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Initial experiments were conducted in water bath: 
 
• Simplifies coupling 
• Convenience in maintaining uniform temperature 

distribution in a sample 



Temperature effect 

• Range: 20  ~ 50 °C 
• Water bath maintained constant for more than 12 hr for 

each experiment  
• “Initial bang” makes it difficult to measure TOF precisely 



Measurements of TOF 



TOF measurements: Delay line method 
• Pros:  

– Elimination the effect of “initial bang” 
– Using Plexiglas (11.75 mm) as delay line 

• Cons: 
– Decreases signal strength 
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Results without delay line: 
• SOSAl =6443 m/s  
 
Handbook value: 
• SOSAl =6420 m/s  

All echoes are reflections from the bottom  

  
  

Delay line method: Test with Aluminum sample 

Results with delay line: 
• SOSAl =6481 m/s  
•  0.6% difference 
 



• Matlab code to determine the TOF between echoes was developed 
• Method is based on matching a single point (e.g., zero crossing or peak 

value) which affects it robustness in dissipative medium 

  

  

Delay line method: Concrete samples 



Cross-correlation method to measure change in the TOF 

• Match the entire waveform instead of a single point. 
• Provides robust method to measure ΔTOF 

 



• Establish “zero” time by matching shapes of waveforms  from 
multiple “round-trip” reflections in low dissipation sample  
– Illustration with aluminum sample 

 

      



Cross-correlation method: Implementation 

 

Cross-correlation performed 
between two echo waveforms 



Use cross-correlation to establish 
reference zero time 

 

TOF TOF 

Oscilloscope  
trigger 

Signal Delay 

• Test results for aluminum sample:  SOSAl = 6467 m/s 
            Reference value: SOSAl = 6420 m/s  

 



Is Signal Delay constant for different samples?  

Material Aluminum Bronze Stainless 
steel 

Steel Plastic 

Signal delay 
after trigger 
(µs) 

91.2 96  94.4 94.4 94.4 

• Using transducer model V302 (1 MHz) 
• Need more experimental tests to confirm  



Signal delay is highly depended on the transducer 
 

• Using transducer A114s (1 MHz) with the same 
aluminum sample  

Signal Delay: 25.6 µs 



SOS as a Function of Temperature 



Temperature effect on SOS in concrete samples 

  
GB (velocity, 
m/s)   

Temperature heating cooling 
20 4190.49 4190.49 
25 4140.62 4122.65 
30 4128.05 4106.95 
35 4121.23 4100.89 
40 4108.78 4068.55 
45 4078.53 4059.72 
50 4035.63 4036.71 
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Surprisingly strong dependence! 



Engineering refractory to 
produce partial internal 

reflections 



Concrete samples with embedded 
scatterers  

• We tried a variety of materials:  
– Glass beads 
– Styrofoam 
– Steel shots 
– Walnut shells 

• 1.25” diameter, 2” long 
• Scatterers are placed as we 

pour cement in stages 

 

 



Example: Steel shot scatterers 

 
 
 

 
 
 
 
Issues:  
• Need to avoid thermal stresses and  
• Maintain overall properties of the refractory 

 



• Water/cement ratio: 0.35 ~ 0.5 
• Curing time: 15 min ~ days 
• Vibrate on remove bubbles 

D = 2” 

L = 2” 
Curing time = 15, 
30, 45 or 60 min 

L = 3” 

D = 2” 

Curing time = 15, 
30, 45 or 60 min 

Curing time = 1 day 

Hypothesis: Small changes in concrete 
formulation will create partial reflections 



  

  

  
  

    

Single internal reflection 

• Water/cement ratio = 0.5 
• Recipe for “good” results: Cure first pour for 1 hour, then pour the second layer 

 



• Water/cement ratio = 0.35 
• First layer cured for 15min. Second layer cured for 1day 
• A more noisy signal, possibly due to entrapped air bubbles 

  15-min  
1-day 

  

  

Two internal reflections 



Higher water content and longer curing result in 
“cleaner” internal reflection signal 

• Water/cement ratio = 0.44 
• Curing time 1day + 1day for this triple pour sample 

 

  1-day  
1-day 

  

  



Partial internal reflections: Observations 

• Water/cement ratio: 0.44 to 0.5 
– Easy to mix and place, high strength concrete 

• Vibrate: Reduces air bubbles in the sample and signal 
degradation   

• Curing time: 1 hour for strong partial reflections; No 
reflections if cured for less than 15 min  

• Spatial resolution: We can identify internal reflections 
between layer ~0.7 inch apart 

• Sample length: Only 4 inch cement sample with the current 
instrument.  



Summary: Low temperature range 
• SOS vs. T dependence is surprisingly strong. It may be possible to measure temperature 

with ± 1°C accuracy. The key to achieving high measurement accuracy is precise 
measurements of the TOF (perhaps with an accuracy of 10ns) 
 

• Spatial resolution of temperature distribution measurements may be as fine as ~1 cm.  Is 
higher resolution possible? 



Thermal Modeling 
• Sub-grid model: Develop a heat transport model of the refractory and the 

model-based method for estimating the refractory temperature 
distribution based on the measurements of Tave(t) and the surface 
temperature of the refractory on the cold side, Tc(t).  

Temperature declines rapidly down the length of the cylinder from the furnace 



Further questions 
• Can changes in material properties be detected? Compare results of 

directly measured and the estimated temperature distribution to 
assess if the change in material properties. (e.g.,  thermal 
conductivity k(r)) can be detected.  

 
• Can changes in refractory thickness be simultaneously measured? 

– Thickness, L, affects the TOF  
– The temperature-compensated and uncompensated measurements of 

L may be different 
 

• Can we detect formation of small cracks?  
– We will also investigate if small cracks, formed at an early state of 

refractory degradation, introduce new ultrasound scatterers that can 
be detected at a receiver and used to monitor the degradation. 

 



Performance at High Temperatires 
• Experimentally test and quantify the developed methods in terms of their 

accuracy, response time, and robustness. The testing will progress from 
the laboratory bench top and furnace testing, to eventual testing in a pilot-
scale coal combustor. Our ultimate goal is to test these methods in the 
pilot scale coal gasifier.  

Thermal imaging suggests that heating inside laboratory oven is axially symmetric. 
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Furnace Cross-section 
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Tasks and Schedule 
PHASE I     
  Task 1 Year 1 annual topical report (30 days after end of the period) is completed Month 13 

  Task 1 
  

Go/no-go decision on whether to continue to Year 2 is made 
  

Month 12 
  

 Task 2.2 
  

The method for model-based estimation of refractory temperature distribution is developed 
  

Month 12 
  

  Task 3 
  
  

1. The method to measure an average refractory temperature is tested in 20-100C temperature range 
2. The system for high-temperature laboratory testing of the developed methods is constructed and 

commissioned 

Month 12 
  
Month 12 

PHASE II      
  Task 1 Completion of Year 2 annual topical report (30 days after end of period) Month 25 
  Task 1 Go/no-go decision on whether to continue Month 24 
  Task 2.3 Develop method for direct US measurement of the refractory temperature  distribution Month 24 

  Task 3 
  
  

1. Test the method to measure an average refractory temperature in the testing chamber.  
2. Test in the chamber the method for the model-based estimation of refractory temperature distribution 
3. Develop laboratory model of refractory degradation by applying thermal shock and chemical exposure  

 
Month 24 
Month 24 

PHASE III      
  Task 1 
  

Submission of the final report (90 days after end of project) 
  

Month 39 
  

  Task 2.4  
1. Method for temperature-compensated US measurement  of refractory thickness is developed 
2. A model-based method to estimate the thermal conductivity profile  based on the measured temperature 

profile is developed  

Month 36 
  
Month 36 
  

 Task 3 
  
  
  

1. Test and correlate the effect of degradation on thermal conductivity 
2. Test in laboratory chamber and  pilot-scale coal combustor the method for direct US measurement of the 

refractory temperature distribution 
3. Test the temperature compensated thickness measurements using US method 

Month 36 
Month 36 
Month 36 
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Questions 
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Dry vs. Saturated Samples 

• Saturated samples produce stronger response 
• TOF appears to be unaffected by the saturation 



Preliminary transmission results 

Aluminum 

1-hr pre-curing 
double pour 
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