INVESTIGATION OF GAS-SOLID FLUIDIZED BED DYNAMICS WITH NON-SPHERICAL PARTICLES

PI – Ahsan Choudhuri, Co-PI – Norman Love
Center for Space Exploration and Technology Research
Department of Mechanical Engineering
University of Texas at El Paso

Presented by: Norman Love

Project Participants

- PI: Ahsan ChoudhuriCo-PI: Norman Love
- Masters: MD Rashedul Sarker
 Undergrad: ASM Chowdhury

Graduates

Mario Ruvalcaba (Now at Federal Mogul) MD Mahamudur Rahman (Now at Drexel Univ)

Publications and Presentations

JOURNAL PAPER

Ruvalcaba, M., Sarker, M., Love, N., and Choudhuri, A., "Experimental and Numerical Study on the Effect of Particle Geometry on Drag and Flow Behaviors in a Packed Fluidized Bed," 2012 (In Preparation).

CONFERENCE PAPERS

Ruvalcaba, M., Rahman, M., Love, N., and Choudhuri, A., "Numerical Study of Gas-Solid Fluidized Bed Dynamics," AIAA-2012-0643, 50th Aerospace Sciences Meeting, AIAA, Nashville, TN, January 6-9, 2012.

Sarker, M., Rahman, M., Love, N., and Choudhuri, A., "Effect of Bed Height, Bed Diameter, and Particle Shape on Minimum Fluidization in a Gas-Solid Fluidized Bed," AIAA-2012-0644, 50th Aerospace Sciences Meeting and Exhibit, AIAA, Nashville, TN, January 6 – 9, 2012.

Ruvalcaba, M., Rahman, M., Love, N., and Choudhuri, A., "Analysis of Drag on Non-Spherical Particles in a Fluidized Bed," AIAA-2011-5746, 9th International Energy Conversion Engineering Conference and Exhibit, AIAA, San Diego, CA, July 31-August 3, 2011.

Rahman, M., Ruvalcaba, M., Love, N., and Choudhuri, A., "Investigation of Gas-Solid Fluidized Bed Dynamics with Spherical and Non-Spherical Particles," AIAA-2011-0131, 49th Aerospace Sciences Meeting and Exhibit, AIAA, Orlando, FL, January 4 – 7, 2011.

Gasification

Fluidized Bed

• Fluidized Bed Reactor:

- Solid particles
 - Become suspended
 - Behave as though they were a fluid

Background

- 2006 Multiphase Workshop- postulated a set of near-midterm, mid-term, and long-term research needs to attain a significant development in the design, operation, and troubleshooting of multiphase flow devices in fossil fuel processing plants by the year 2015.
- Despite previous efforts on gas-solid flows in a fluidized bed, bed dynamics and particle scale motions are still poorly understood
- A majority of past experimental and computational efforts have been focused on the behavior fluidized bed with spherical particles whereas in most fossil-fuel processes the particles are often non-spherical

Project Objectives

Objective 1: To Evaluate Drag Force on Non-Spherical Particles

Objective 2: To Incorporate Experimental Data for Non-Spherical Particles in MFIX and FLUENT

Objective 3: To Obtain Full-Field Visualization of Motions of Non-Spherical Particles

		UFF

Tasks- Overview

<u>Year 1:</u>

- Task 1: Design of the Experimental Setup: Production and Categorization of Non-Spherical Particles
- Task 2: Map fluidization velocities in bed
- Task 3: Terminal Velocity Determination of Free Falling Non-Spherical Particles

<u>Year 2:</u>

- Task 4: Obtain Drag relations for Non-Spherical Particles
- Task 5: Modeling of Pressure Drop and Terminal Velocities in Fluidized Bed for Non-Spherical Particles
- > Task 6: Implement Experimental Drag Relations Using Numerical Model

<u>Year 3:</u>

- Task 6 Continued: Implement Experimental Drag Relations Using Numerical Model
- Task 7: Integration of the Imaging Instrumentation and Diagnostics with the Experimental Setup
- Task 8: Development of Algorithm for Detection of Non-Spherical Geometries, Particle Pair Identification, Trajectory, and Velocity Components CSETR

Outline

- Experimental Benchmarking Spherical Particles
 - 1st Generation Bed
 - 2nd Generation Bed
- Measure the effect of:
 - Bed Height
 - Particle Shape
- Development of numerical models
 - Benchmarking with experimental data
 - Drag model development
 - Implementation into FLUENT
- Qualitative comparisons with Computational Data
 - High-speed camera Images

Experimental Setup 1st Gen

Experimental Setup 2nd Gen

SEI

Experimental Setup

Test Particles

Spherical Mean Diameter = 1 mm

Non-spherical Mean Diameter = 0.9-1 mm

POWERING INNOVATION THROUGH DIVERSITY

Particle Production

Hydraulic Compressor

Sieve Shaker and Sieves

Particle Size

Spherical Particles

1 mm borosilicate glass beads with a density of 2230 kg/m³

Non-Spherical Particles:

- Sieve was used to get the particle size distribution
- Mean particle size is 0.9 1 mm

	Physical Properties
$SiO_2 = 80.6\%$	Coefficient of expansion (20°C-300°C) 3.3 x 10 ⁻⁶ K ⁻¹
$B2O_3 = 13.0\%$	Density 2.23g/cm ³
$Na_2 O = 4.0\%$	Refractive index (Sodium D line) 1.474
$AI2O_3 = 2.3\%$	Dielectric constant (1MHz, 20°C) 4.6
Optical Information	Specific heat (20°C) 750J/kg°C
Defrective index (Codium D	
Refractive index (Sodium D	
line) = 1.474	Thermal conductivity (20°C) 1.14W/m°C
line) = 1.474 Visible light transmission,	Thermal conductivity (20°C) 1.14W/m°C
Refractive index (Sodium D line) = 1.474 Visible light transmission, 2mm thick glass = 92%	Thermal conductivity (20°C) 1,14W/m°C Poisson's Ratio (25°C – 400°C) 0.2
Refractive index (Sodium D line) = 1.474 Visible light transmission, 2mm thick glass = 92% Visible light transmission,	Thermal conductivity (20°C) 1.14W/m°C Poisson's Ratio (25°C – 400°C) 0.2
Refractive index (Sodium D line) = 1.474 Visible light transmission, 2mm thick glass = 92% Visible light transmission, 5mm thick glass = 91%	Thermal conductivity (20°C) 1,14W/m°C Poisson's Ratio (25°C – 400°C) 0.2 Young's Modulus (25°C) 6400 kg/mm2

POWERING INNOVATION THROUGH DIVERSITY

CSETR

Experimental Benchmarking

Void Fraction

Spherical Particles

➢ Fluidized beds are made densely packed by shaking.

➢ Voidage ranged from 0.37 to 0.39 for dense packed bed of monosized spherical particles

□ Non-Spherical Particles

> Packing void fraction depends on particles sphericity

	- Ve	bidage
Sphericity	Loose Packing	Dense Packing
0.25	0.85	0.8
0.3	0.8	0.75
0.35	0.75	0.7
0.4	0.72	0.67
0.45	0.68	0.63
0.5	0.64	0.59
0.55	0.61	0.55
0.6	0.58	0.51
0.65	0.55	0.48
0.7	0.53	0.45
0.75	0.51	0.42
0.8	0.49	0.4
0.85	0.47	0.38
0.9	0.45	0.36
0.95	0.43	0.34
1	0.41	0.32

Yang W.C., "Handbook of Fluidization and Fluid-Particle Systems", Marcel Dekker Inc, Madison Aveneu, New York 2003

POWERING INNOVATION THROUGH DIVERSITY

Outline

- Experimental Benchmarking Spherical Particles
 - 1st Generation Bed
 - 2nd Generation Bed
- Measure the effect of:
 - Bed Height
 - Particle Shape
- Development of numerical models
 - Benchmarking with experimental data
 - Drag model development
 - Implementation into FLUENT
- Qualitative comparisons with Computational Data
 - High-speed camera Images

Effect of Bed Height

Spherical Particles:

POWERING INNOVATION THROUGH DIVERSITY

Effect of Particle Shape

- Non-spherical particles had higher voidage fractions (ε)
- Particle bed weights were measured: spherical particles with the same bed heights contained higher mass then the non spherical particles.

POWERING INNOVATION THROUGH DIVERSITY

- Higher channeling for non-spherical particles
- Pressure drop due to high velocities

 Channeling caused non-uniform distribution of fluid and solid inside of bed

Outline

- Experimental Benchmarking Spherical Particles
 - 1st Generation Bed
 - 2nd Generation Bed
- Measure the effect of:
 - Bed Height
 - Particle Shape
- Development of numerical models
 - Benchmarking with experimental data
 - Drag model development
 - Implementation into FLUENT
- Qualitative comparisons with Computational Data
 - High-speed camera Images

POWERING INNOVATION THROUGH DIVERSITY

Objective

- To develop and validate a computational model that can predict the pressure drop across a packed bed operating with spherical or non-spherical particles
- Use both FLUENT and MFIX to develop the model and compare results
 - FLUENT, a general-purpose CFD code based on the finite volume method on a collocated grid.
 - MFIX (Multiphase Flow with Interphase eXchanges), a solver developed at the Department of Energy's National Energy Technology Laboratory (NETL) for multiphase flows

Governing Equations:

- Volume Fraction
- Continuity Eqn.
- Momentum Eqns.

 $\frac{\partial}{\partial t} \left(\varepsilon_g \ \rho_g \right) + \nabla \cdot \left(\varepsilon_g \ \rho_g \overrightarrow{v_g} \right) = 0$

 $\varepsilon_g + \varepsilon_s = 1$

$$\frac{\partial}{\partial t} \left(\varepsilon_g \ \rho_g \overrightarrow{v_g} \right) + \nabla \cdot \left(\varepsilon_g \ \rho_g \overrightarrow{v_g} \overrightarrow{v_g} \right) = \nabla \cdot \overline{S_g} + \varepsilon_g \ \rho_g \overrightarrow{g} + \overline{I_{gs}}$$

the rate of momentum transfer between the gas and solid phase per unit volume

 $\overrightarrow{I_{gs}} = -\varepsilon_s \nabla P_g - F_{gs} \left(\overrightarrow{v_s} - \overrightarrow{v_g} \right)$

Drag Force

POWERING INNOVATION THROUGH DIVERSITY

Spherical Particles

- Two popular drag models were tested:
 - ≻Gidaspow et al. (1992)

Gidaspow, D., Bezburuah, R., and Ding, J., "Hydrodynamics of Circulating Fluidized Beds, Kinetic Theory Approach," Proceedings of the 7th Engineering Foundation Conference on Fluidization, Engnieerign Foundation, Brisbane, Australia, 1992, pp. 75-82.

≻Syamlal and O'brien (1989)

Syamlal, M., and O'Brien, T., "Computer Simulation of Bubbles in a Fluidized Bed," AIChE Symposium Series, Vol. 85, 1989, pp.22–31.

cSET

$$F_{gs} = \begin{cases} \frac{3}{4}C_{D-sphere} \frac{\rho_{g}\varepsilon_{g}\varepsilon_{s}[\overrightarrow{v_{s}}-\overrightarrow{v_{g}}]}{d_{p}}\varepsilon_{g}^{-2.65} & \varepsilon_{g} \ge 0.8\\ \frac{150\varepsilon_{s}(1-\varepsilon_{g})\mu_{g}}{\varepsilon_{g}d_{p}^{2}} + \frac{1.75\rho_{g}\varepsilon_{s}[\overrightarrow{v_{s}}-\overrightarrow{v_{g}}]}{d_{p}} & \varepsilon_{g} < 0.8 \end{cases}$$

$$C_{D-sphere} = \begin{cases} 24/Re(1+0.15Re^{0.687}) Re \le 1000\\ 0.44 & Re > 1000 \end{cases}$$

$$Re = \frac{\varepsilon_{g}\rho_{g}[\overrightarrow{v_{s}}-\overrightarrow{v_{g}}]d_{p}}{\mu_{g}}$$

$$v_{s} = \text{ solids velocity } \varepsilon_{s} = \text{ solids volume fraction} \\ v_{g} = \text{ gas velocity } \varepsilon_{g} = \text{ gas volume fraction} \end{cases}$$

SEI

$$F_{gs} = \frac{3\varepsilon_s \varepsilon_g \rho_g}{4v_t^2 d_p} C_{D-sphere} \left| \overrightarrow{v_s} - \overrightarrow{v_g} \right|$$

$$C_{D-sphere} = \left(0.63 + 4.8 \sqrt{\frac{v_t}{Re}}\right)^2$$

$$v_t = 0.5 \left(A - 0.06Re + \sqrt{(0.06Re)^2 + 0.12Re(2B - A) + A^2} \right)$$

$$A = \varepsilon_g^{4.14}$$

$$B = \begin{cases} 0.8\varepsilon_g^{1.28} & \varepsilon_g \le 0.85\\ \varepsilon_g^{2.65} & \varepsilon_g > 0.85 \end{cases}$$

$$Re = \frac{d_p |\overline{v_s} - \overline{v_g}| \rho_g}{\mu_g}$$
CSETR
POWERING INNOVATION THROUGH DIVERSITY

Numerical Model

Numerical Model

Benchmarking with Experiments

- The rice grains were assumed to ellipsoid in shape
- The Eqn. used to determine the initial terminal velocity :

$$v_{t} = \sqrt{\frac{8 \text{ bg} (\rho_{s} - \rho_{f})}{3 \text{ C}_{D}} \frac{(\rho_{s} - \rho_{f})}{\rho_{f}}}$$

where V_t is the terminal velocity, b is the mean polar diameter along the y-axis, ρ_s is the density of rice grain, ρ_f is the density of air, and C_D is the drag coefficient initially assumed to be 0.6.

- Rice density 577 kg/m³
- Air density as 1.2 kg/m³
- 3100 frames per second

cSETR

POWERING INNOVATION THROUGH DIVERSITY

SEI

UEP

POWERING INNOVATION THROUGH DIVERSITY

SE

Implementation of Model

Outline

- Experimental Benchmarking Spherical Particles
 - 1st Generation Bed
 - 2nd Generation Bed
- Measure the effect of:
 - Bed Height
 - Particle Shape
- Development of numerical models
 - Benchmarking with experimental data
 - Drag model development
 - Implementation into FLUENT
- Qualitative comparisons with Computational Data
 - High-speed camera Images

time = 1.5 s					
FLUENT		MFIX			
Syamlal-O'Brien	Gidaspow	Syamlal-O'Brien	Gidaspow		
1 1	1 1	L L	1 1		
Art S	Service .		6		

Solid-phase volume fraction Solid particles velocity field

POWERING INNOVATION THROUGH DIVERSITY

POWERING INNOVATION THROUGH DIVERSITY

Gidaspow

SETR

Summary and Highlights to Date

- Fluidized bed design & experimental setup
 - 1st Generation and 2nd Generation
 - Benchmark tests complete
- Development of computational model
 - Benchmark tests complete
 - Empirical drag model implementation
- High-speed imaging

Anticipated Efforts for the Upcoming Year

- Obtaining Velocity and Drag for Non-Spherical Particles
 - ≻ C_D vs. Re
 - Various geometry particles
 - Validation with experiments/model
- Implementation of newly acquired shadow sizing system for the:
 - Detection of Non-Spherical Geometries,
 - Particle size
 - > Trajectory,
 - Velocity Components cSETR

POWERING INNOVATION THROUGH DIVERSITY

Contact Information

If you have any questions or would be interested in collaboration please contact

Ahsan Choudhuri

ahsan@utep.edu

915-747-6905

Norman Love

ndlove@utep.edu

915-747-8981

cSETR

POWERING INNOVATION THROUGH DIVERSITY

