

Progress Report DoE Grant No: DE-FE0003859

Metal oxide sensing materials integrated with hightemperature optical sensor platforms for real-time fossil fuel gas composition analysis

Kevin P. Chen PI

Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, PA 15261 Email: <u>pec9@pitt.edu</u>, Tel. 724-6128935

May 30, 2012

- University Coal Research Program
- Starting September 2010 (20-Months)
- Two Key Components:
 - Development of High-Temperature Sensor Platforms
 - Integration and Application of Functional Metal Oxide for Gas Sensing
- Three fiber sensor platform techniques
- Seven journal publications
- Two industrial collaborations

Research Overview

- Point fiber sensor for high-T
 - High performance high-T FBG point sensor (>800C) at \$20/sensor
 - Chemical regenerative process
 - Integration with SnO₂ on D-Shaped fiber for NH₃ sensing
- Distributed fiber chemical sensor
 - First-ever demonstration of distributed fiber chemical sensing
 - Rayleigh-scattering OFDR technique
 - 1-cm spatial resolution
 - Integration with Pd/PdH for H₂ sensing
- Coherent Anti-Stokes Raman (CAR) sensor
 - One-laser pulse CARS measurement using temporal pulse shaping
 - Integration with hollow-core fiber
 - >1000 enhancement beyond spontaneous Raman
 - Aiming for CO_2 and C_2H_6 measurement

Topic I: Point Fiber Sensor for high-T

- Current State of the Art
 - Single-mode F-P interferometer on the fiber tip
 - Fiber Bragg grating in single-mode fiber by the ultrafast laser fabrication
- Challenge
 - Packaging is key (Expensive and difficult)
 - Poor spectral performance
 - Expensive

Dr. Wang's group at VT

Type II FBG

- Turn a \$20 dollar commercially off-shelf fiber Bragg grating into a high-temperature sensors beyond 800C.
- Extended this process to air-hole microstructural fibers, expand capability of fiber sensor beyond only temperature or strain measurements.
 - Specially laser fabrication equipment for high-T grating fabrication <u>no</u> <u>longer needed!</u>
 - Cost of high-T sensors could come down drastically!
 - Parameters that sensor can measure drastically expanded (due to the air-hole microstructural fibers.

Process: Chemical Regenerative Process

- A Strong Type I FBG in optical fiber by UV laser.
- Rapid thermal annealing to anneal UV-induced defect.
 - Customer furnace development
- Stress induced on the fiber core-cladding interface during defect erasure.

Miniaturized Furnace

Control Software

Sample Run

Process: Chemical Regenerative Process

High-T Thermal Drift: 0.013 K/hour (Best case) 0.045 K/hour (Worse)

0.0005

0.0004

0.0003

0.0002

0.0001

0.0000

2500

Birefringence

Pressure Testing

FEA Simulation

Pressure Test

Simultaneous Measurement of T and P

$$\begin{pmatrix} \Delta \lambda_o \\ \Delta \lambda_e \end{pmatrix} = 1.532 \times 10^{-2} \Delta T + \begin{pmatrix} 2.521 \times 10^{-4} - 9.185 \times 10^{-8} \Delta T \\ 3.526 \times 10^{-4} - 1.232 \times 10^{-7} \Delta T \end{pmatrix} \Delta P$$

$$\Delta \lambda_{o,e} = \lambda - 1545.25nm$$

 $\Delta T = T - 0^{\circ}C$

 $\Delta P = P - 0psi$

Industry Collaborator: Lakeshore Crytronics

High-T Chemical Sensing

5ppm Ammonia Testing

- Oxide-coated FBG stable up to 800C
- Metal Oxide Coating: TiO₂, SnO₂, ZnO₂
- Gas under tests: NH₃
- Testing Range: <1 ppm
- Oxide coating need optimization

Progress Update: high T FBG sensors

- Success in sensor platform development
 - FBG sensors with superior spectral characteristics at high T
 - Demonstrate high-T stable FBG sensor derived from standard single-mode fiber
 - Low cost
 - Potential commercialization
 - >1000C operation possible using silica-core fiber
- Successful fiber coating development
 - SnO_2 , TiO_2 , and ZnO_2
 - Integration with D-shaped fiber
 - Coated FBG successfully regenerated at 700C
- Fiber sensor testing
 - NH₃, NO_x
 - Sensor response need optimization

Topic II: Distributed Fiber Sensor

- Current State of the Art
 - Brillouin Scattering OTDR
 - Sub-meter resolution
 - Limited to Temperature and Strain measurement (0.1C and 1 $\mu\epsilon$)
 - Long distance (up to km)
 - Rayleigh Scattering OFDR
 - mm- resolution
 - Limited to Temperature and Strain measurement (0.1C and 1 $\mu\epsilon$)
 - ~100 meter distance

Schematic illustration of Brillouin scattering and (b) Rayleigh scattering.

- Expand Rayleigh scattering distributed sensing beyond T measurement
- Active fiber sensing scheme for environmental adapability.
- Air-hole microstructural fiber for multi-parameter measurement
- Functional coating on-fiber for chemical sensing with -cm resolution

Rayleigh Scattering and OFDR

Rayleigh Scattering

Fig. 3: Schematic sketch illustration of the OFDR operation principle [20].

✓ Optical Frequency Domain Reflectometry (Swept-Wavelength Interferometry) for Sub-mm spatial resolution over tens of meters

- ✓ In-fiber Rayleigh scattering highly sensitive to local perturbation
- ✓ All-temperature operation
- ✓ Further Functionality improvement possible
- Cost, Response Time, Cross Talk

Distributed Pressure Measurement

OFDR Measurement Results Two-Hole Fibers: 2000 psi

Fiber Length (mm)

OFDR Measurement Results Room Temperature

OFDR Measurement Results Two-Hole Fibers at 800C

Distributed Hydrogen Sensing

Sputtering Coating of Pd on fiber

Chemical Sensing: H2 sensing Case using FBG

Distributed Chemical Sensing

Heating of on-fiber Pd Coating to Speed up sensor performance

Distributed Sensor Response (10% hydrogen)

Progress Update: Distributed Sensing

- Distributed Fiber Sensing Beyond T and Strain Measurements
 - Demonstration of distributed pressure sensing
 - Demonstration of distributed chemical sensing
 - Spatial resolution of 1-cm achieved
 - High temperature capability demonstrated at 800C
 - Demonstration of distributed flow sensing
 - Working on Chemical sensing (pH sensing).
 - >1000C operation possible (depends on fiber)
- Further development
 - Improve distributed chemical/pressure/flow measurement distance > 1 km at high T
 - Enhance sensitivity and response time
 - Expand distributed measurement species

Metal Oxide Optical Sensor Development 🛞

- Integration of Metal Oxide with Sensor Platform
 - Nano-structural Engineering on functional metal oxide to control refractive index
 - Reduce n from 2.2 to ~1.45
 - Integration of functional metal oxide on high-T fiber sensor platform
 - 3D nano-fabrication of functional metal oxide.
 - Testing at high Temperature.
 - Development of distributed sensing scheme.

🕐 Metal Oxide Optical Sensor Development 🛞

• D-shape Fiber Sensor

🕜 Metal Oxide Optical Sensor Development 🛞

- D-shape Fiber Sensor
 - Evanescent field interact with metal oxide
 - SnO₂ metal oxide for NH₃ measurements
 - Metal oxide porosity control to reduce refractive index

- Success in high-T point sensor development
 - Greatly reduce the cost of high-T FBG sensor
 - Operation T > 800C
 - High T FBG sensor in air-hole microstructured fiber with superior performance
 - (Future) DFB fiber laser sensor for > 800C operation.
- **Extraordinary** success in distributed sensor development
 - First ever demonstration of distributed chemical sensor
 - First ever demonstration of distributed flow sensor
 - First ever demonstration of distributed pressure sensor for <u>high temperature</u>
 - (Future development for >10 km distributed measurement)
- Metal oxide integration (need more works)
 - Success in metal oxide porosity and index refraction control
 - Complete metal oxide fiber integration
 - Need to improve test results.