

Wireless, Passive Ceramic Strain Sensors for Turbine Engine Applications

Gang Shao and Linan An

Advanced Materials Processing and Analysis Center (AMPAC) Department of Mechanical, Materials, and Aerospace Engineering (MMAE) University of Central Florida Orlando, FL 32816

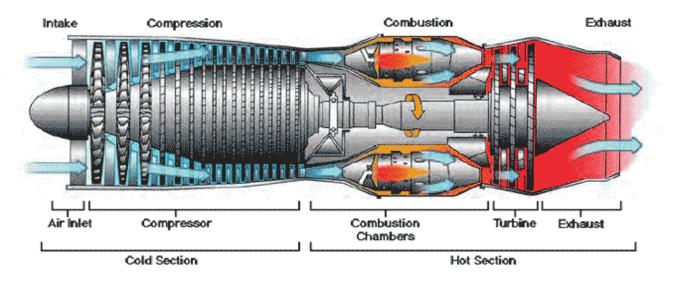
Outline

- Motivation
- Strain Sensors State of the Art
- Objectives
- Schedule and timelines
- Accomplishment
- Future Work
- Summary

Motivation – applications of turbines

■ Turbine engines – key for energy generation and propulsion

Description	2007					
Net Generation (thousand megawatthours)						
Coal <u>[1]</u>	2,016,456					
Petroleum[2]	65,739					
Natural Gas	896,590					
Other Gases <mark>[3]</mark>	13,453					
Nuclear	806,425					
Hydroelectric Conventional[4]	247,510					
Other Renewables[5]	105,238					
Wind	34,450					
Solar Thermal and Photovoltaic	612					
Wood and Wood Derived Fuels[6]	39,014					
Geothermal	14,637					
Other Biomass[7]	16,525					
Pumped Storage[8]	-6,896					
Other[9]	12,231					
All Energy Sources	4,156,745					



2007 Energy Generation Statistics (DOE)

Motivation – need for wireless strain sensors

- Parts subjected to severe strain/stress in extreme environments
- Moving parts/hidden areas need wireless
- High temperatures need passive
- Predict the failure
- Reduce unnecessary out-of-service examination and replacement

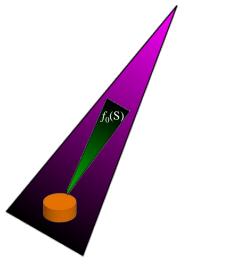
Strain sensors-State of the Art

Optical-Based Non-Contact Sensors

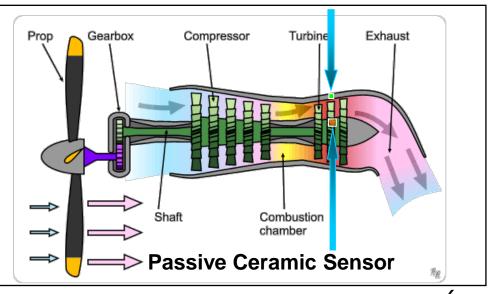
- □ Lack of necessary accuracy
- □ Not robust in harsh environments
- Strain gage
 - □ Piezoresistivity changes in resistivity with strain/stress
 - □ Cannot be wireless

Piezoelectric based load cell

- □ Can be wireless
- □ Piezoelectric materials cannot be used to high temperatures
- □ Need power source
- Capacitive based pressure sensor
 - □ Can measure pressure induced strain/stress
 - □ Cannot measure parts strain/stress

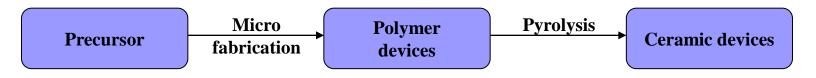


Objectives


Overall Objective

Develop RF resonator-based wireless passive polymer-derived ceramic strain/stress sensors

- Scientific Goals
 - □ Develop piezo-dielectric polymer-derived ceramics (p-PDCs)
 - Design and fabricate resonator sensors
 - □ Characterize the sensors in extreme environments



Passive Ceramic Sensor

Background – polymer-derived ceramics

- Excellent high-temperature resistance
 - □ High thermal stability
 - □ High oxidation/corrosion resistance
- Microfabrication capability
- Unique electric/dielectric behavior
 - □ Resistivity varied in a large range
 - □ High piezoresistivity
 - □ High piezo-dielectricity

Schedule and Timeline

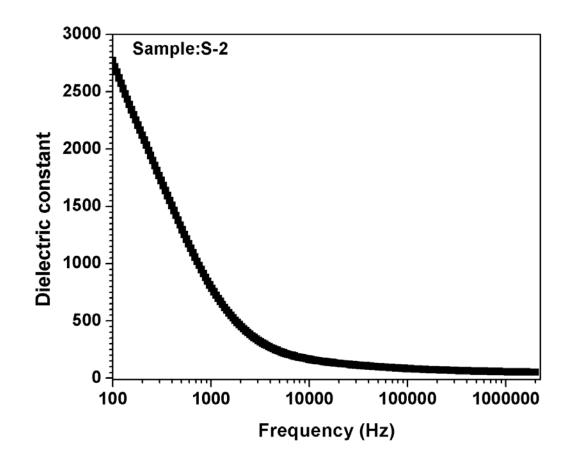
	10/2011-09/2012			10/2012-09/2013			10/2013-09/2014					
	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	Q11	Q12
Task 1: Research Management Plan												
Task 2: Materials development												
Task 3: Sensor design and Fabrication												
Task 4: Sensor testing												

Milestone	Planned Completion Date	Verification Method
1: Finish room temperature material selection	06/30/2012	
2: Finish first run of sensor design	09/31/2012	
3: Finish final material selection	03/31/2013	
4: Finish final sensor design	09/31/2013	
5: Sensor fabrication	12/31/2013	
6: Sensor characterization	09/30/2014	

Material synthesis

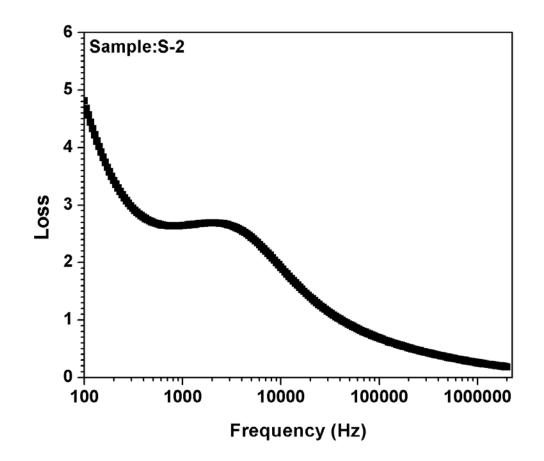
Precursor synthesis

Name	MA	ASB	819	VL20	PVN
S-1	2 wt%	5 wt%	5 wt%	78 wt%	10 wt%
S-2	2 wt%	5 wt%	5 wt%	68 wt%	20 wt%
S-3	2 wt%	5 wt%	5 wt%	58 wt%	30 wt%
S-4	2 wt%	10 wt%	5 wt%	53 wt%	30 wt%
S-5	2 wt%	20 wt%	5 wt%	43 wt%	30 wt%

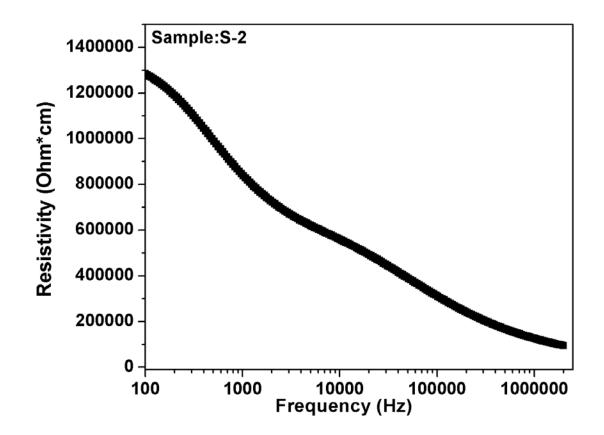

- Polysilazane (VL20) main precursor
- Phenylbis (2, 4, 6-trimethylbenzoyl) phosphine oxide (819) -- photo initiator
- Methacrylic Acid (MA) photo enhancer
- Aluminum-tri-sec-butoxide (ASB) precursor for aluminum)
- Poly (melamine-co-formaldehyde) acrylated solution (PVN) precursor for nitrogen)

Precursor synthesis

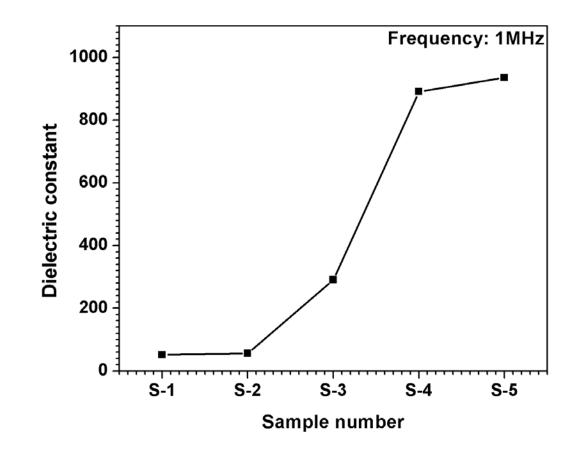
Samples obtained at 1000, 1100, 1200 and 1300°C for each composition



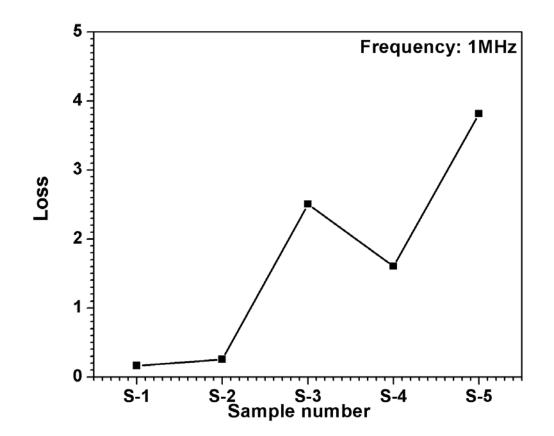
- Property characterization
 - □ Frequency-dependent dielectric constant



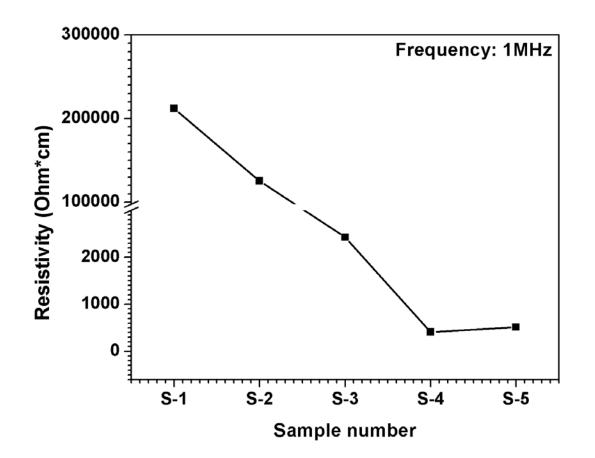
- Property characterization
 - □ Frequency-dependent dielectric loss



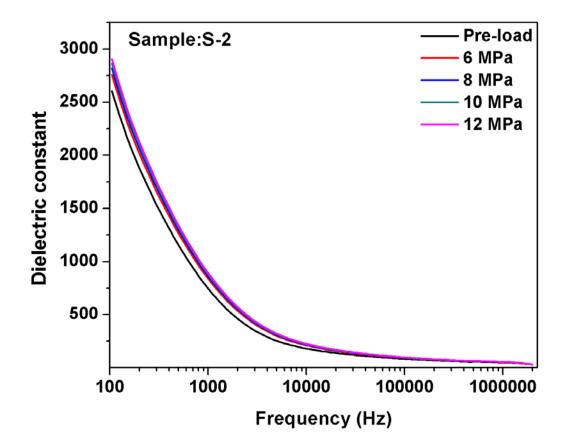
- Property characterization
 - □ Frequency-dependent resistivity



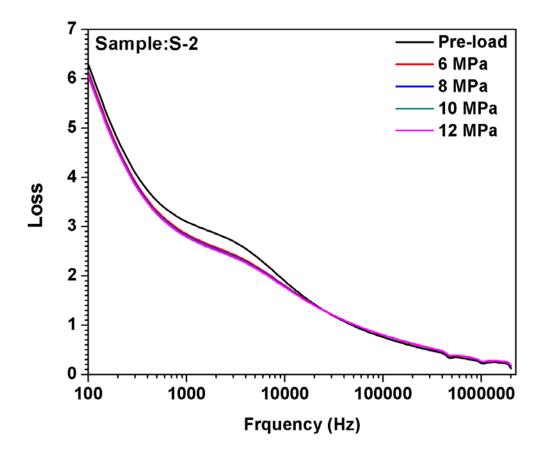
- Property characterization
 - □ Comparison of dielectric constant



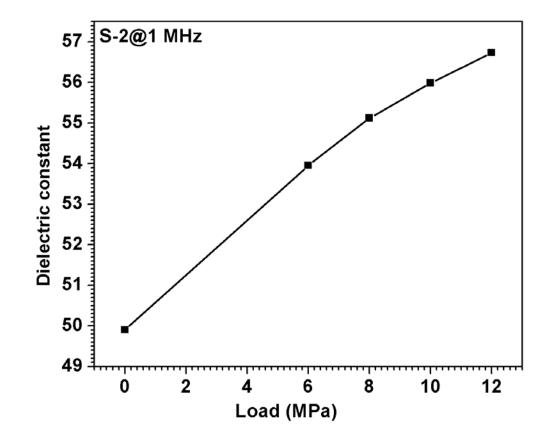
- Property characterization
 - □ Comparison of dielectric loss



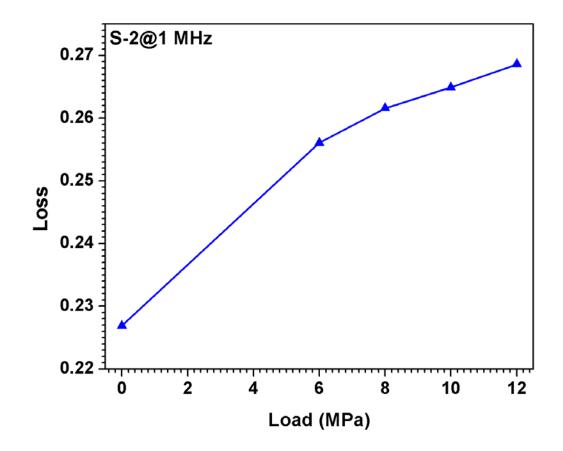
- Property characterization
 - □ Comparison of resistivity



- Property characterization
 - Pressure-dependent dielectric constant



- Property characterization
 - □ Pressure-dependent dielectric loss



- Property characterization
 - □ Comparison of dielectric constant

- Property characterization
 - □ Comparison of dielectric loss

Future work

- Material development
 - □ Finalize room-temperature material characterization
 - Design, synthesize and characterize optimal materials
- Design and fabricate sensors
 - Design the resonator based strain sensors
 - □ Fabricate the designed sensors
 - Sensor characterization
 - □ Pack the sensor for testing
 - □ Test the sensors in different temperatures

Summary

- Polymer-derived ceramics possess necessary properties for making wireless, passive strain/stress sensors for high-temperature applications.
- We have finished materials synthesis and have started material property characterization.
- Our preliminary results showed that the dielectric properties of PDCs can be tailored in a large range.
- The dielectric constant varied significantly with applied stress, indicating the sensor could have very high sensitivity.
- The R&D progress follows the proposed schedule.