BIMETALLIC NANOCATALYSTS IN MESOPOROUS SILICA FOR HYDROGEN PRODUCTION FROM COAL-DERIVED FUELS

(DE-FG26-09NT0008066)

(Dr. Dunst, Program Officer)

Debasish Kuila, Ph. D.

Professor

Department of Chemistry

North Carolina A & T State University Greensboro, NC 27411

dkuila@ncat.edu

May 30th, 2012

Outline

- o Steam Reforming and H₂ Economy
- o Nanocatalysts in Mesoporous Silica-Bi-metallic Pd-Co and Pd-Ni in nanoporous Silica
- o Characterization XRD, FT-IR, BET, HRTEM, and Magnetic Studies
- o Steam Reforming of MeOH with Bimetallic Nanocatalysts

HYDROGEN PRODUCTION (Steam Reforming)

Steam reforming is a favored route to produce H_2 from hydrocarbons (C_nH_{2n+2}) and low-molecular weight alcohols with the aid of a catalyst.

For Example, $CH_3OH + H_2O \leftrightarrow 3H_2 + CO_2$

Methanol decomposition: $CH_3OH \leftrightarrow 2H_2 + CO$

Water-gas shift reaction: CO + $H_2O \leftrightarrow H_2 + CO_2$

Steam Reforming of Methanol (SRM) is typically carried out at 200–400°C using a copper-based catalyst (Cu/Zn/AI).

HYDROGEN – FUEL OF THE FUTURE

- (a) Easy to produce
- (b) Versatile; converts easily to other energy forms at the user end
- (c) High utilization efficiency
- (d) Environmentally compatible (zero- or low-emission)
- Hui-Ming Cheng, et.al. Carbon (2001)

HYDROGEN PRODUCTION

A number of materials are being developed to replace Cu/Zn/Al catalysts.

Oxide supported Pt group metal catalysts have received a great deal of attention

These materials are very active; however,

✓ Poor selectivity, yielding primarily CO and H_2 during the reforming reaction

✓ High cost

✓ Catalyst poisoning by CO

Goal-Interdisciplinary Research

 Develop novel nanocatalysts for hydrogen production by steam reforming reactions (SRRs) of fuels/biofuels.

Si-Microreactors for F-T Synthesis and H₂ Production at LA Tech (*Previous Research*)

Zhao & Kuila, Nanocatalysis in Microreactors for Fuels, Wiley, 2010

Hydrogen Production from Fuels

Our Strategy

- Optimize structure of a support material to increase the contact area between the catalyst and the reagent
- Alter and optimize the metal catalyst composition to make it CO-tolerant
- Establish a simple synthetic procedure to prepare supported bimetallic nanocatalyst (to investigate synergistic behavior)

Nanocatalysts for H₂ Production

Design, synthesize and characterize novel nanostructured mesoporous silica based catalysts for steam reforming reactions to produce hydrogen

Mesoporous Silica

• What is Mesoporous Silica?

Mesoporous Silica

- Hexagonal Structures: SBA-15, MCM-41
- High surface area, Wall thickness- 2 to 7 nm, Pore size- 3 to 15 nm
- Cubic Structure: SBA-16, MCM-48, SBA-1
- Highly crystalline, High surface area, Wall thickness – 9.6 nm

Methodologies used previously

- Multi-step synthetic route.
- Disadvantages

Our approach

- One-pot synthetic route to MCM-41
- Advantages

Our Methodology

- Mix $Pd(NO_3)_2$ or $Ni(NO_3)_2$ with $Pd(NO_3)_2$. Dissolve Cetyl Trimethyl Ammonium Bromide (CTAB).
- Mix CTAB with bimetallic salts.
- Add Tetramethoxy Silane and Ammonia.
- Stirred vigorously.
- Aged in oven.
- Filtered and dried.
- Calcined and Reduced.
 - Synthesized MCM-41 material and compared with bimetallic silica.

Characterization

- Physical Characterizations: XRD, BET Surface Area, TEM, EDX, and Magnetic measurements.
- Spectroscopy: FTIR

Low Angle XRD of Mono-metallic MCM-41

— MCM-41 — Pd MCM — Co MCM

The materials show the characteristic d₁₀₀ peak for MCM- 41.
Co containing materials show low

1

1.5

2

2.5

3

3.5

2 - Theta

4.5

5

5.5

6

materials show low intense peak.

Low angle XRD of mono and bi-metallic MCM 41 materials

2 - Theta

Effect of Different Metal Loading on Mesoporous Structure for Single and bimetallic matarials

Observations

With the increase in metal content, the MCM-41 structure disappears.

- Peaks at d_{100} , d_{110} and d_{200} .
- Shift to higher values.
- Decrease in intensity and broadening of the Pd-Co peaks.

LW XRD of Pd-Ni in Mesoporous Silica

B. Tatineni et al, 2011

FTIR Studies

□Bands at 674 and 586 cm⁻¹ - Indicative of strong interaction between heteroatoms and silicon (Si-O-M bonds).

Isotherms

• The synthesized bimetallic Pd-Co-MCM-41 material shows type IV isotherm, the characteristics of MCM-41 materials.

Surface Area and Pore Size

SI.No.	Material	BET Surface Area, m²/gm	Pore Diameter (DFT), Å
1	MCM – 41	970	28.0
2	Pd Co B1	828	29.41
3	Pd Co B2	845	29.41
4	Pd Co B5	775	28.22

SEM IMAGE of Mesoporous Silica

Particle size - varies from 100 to 300 nm.
Morphology - hexagonal and winding worm type.
Small particle size along with worm type structure.
Supports bimetallic nature.

TEM

MCM-41

Pd-Co-MCM-41

- Shows the typical hexagonal structure of MCM-
- 41 in Bi-metallic Pd-Co material.
- Indicates uniform size distribution.

TEM of Pd-Ni in Mesoporous Silica

Print Mag: 555000x @ 7.0 in

20 nm

pn_b5_20k.tif Print Mag: 112000x @ 7.0 in

100 nm

Concentration of PdNi is consistent with the EDX results.

Indicate a homogeneous dispersion of PdNi bimetallic nanoparticles in mesoporous silica.

Particle Size Distribution

Particle Size, nm

Our Steam Reforming Set-up

SRM with Pd-Ni in Mesoporous Silica

VSM of Pd-Ni before and after SRM reaction

CONCLUSIONS

- Developed one-pot synthesis of mesoporous silica containing nanometals
- Synthesized ordered mesostructures with uniform distribution of bimetallic nanocrystals.
- Steam Reforming of MeOH with Pd-Ni bimetallic nanocatalysts in mesoporous silica is promising.
- SRM with Pd-Co is currently underway.

Support (Receiving/Received)

- Dr. Yulia Basova (Research Associate, Part-time Adjunct Lecturer)
- Mr. Atikur Rahman (Graduate Student)
- Ms. Jasmine Taylor (Undergraduate Student)
- Mr. Saiful Islam (Graduate Student)
- Mr. Karshak Kosaraju (Graduate Student)

Acknowledgements

- Drs. D. Kumar and S. Yarmolenko
- Consultant- Dr. B. Tatineni
- DOE- NETL

Publications/Presentations

• B. Tatineni, Y. Basova, A. Rahman, S. Islam, M. Rahman, A. Islam, J. Perkins, J. King, J. Taylor, D. Kumar, S. Ilias and D. Kuila , 'Development of Mesoporous Silica Encapsulated Pd-Ni Nanocatalyst for Hydrogen Production", *In Production and Purification of Ultraclean Transportation Fuels*; Hu, Y., et al.; *ACS Symposium Series;* American Chemical Society:

Washington, DC, 2011, Chapter 9, 178-190.

- D. Kuila, Development of Nanocatalysts in Silica for Fuels using Si-Microchannel and Tubular Reactors", International CERT Conference, Greensboro, NC, Invited, **November 7, 2011.**
- D. Kuila et al. Bimetallic Pd-Co Nanocatalysts in Mesoporous Silica for Steam Reforming of Methanol (<u>Fuel-88</u>), ACS National Mtg. Anaheim, CA, March, **2011.**
- S. H. Mohtarami et al, Abstract for ACS National Mtg., **August, 2012,** Philadelphia, Accepted

Proceedings/Abstracts/Presentations

- D. Kuila, B.Tatineni, M. A. Islam, Y. Basova, M. A. Rahman, M. M. Rahman, S. Islam, S. Ilias, J. Taylor, J. King,"Novel nanocatalysts for hydrogen production" Preprints of Symposia - ACS, Division of Fuel Chemistry 2009, 54(2), 1072-1073; (FUEL-314).
- M. A. Rahman, M. M. Rahman, M. S. Islam, Y. Basova, D. Kuila, S. Ilias, "Ethanol Steam Reforming by Silica Encapsulated Bimetallic Pd_Ni catalyst in a Pd-Composite Membrane Reactor "16th Symposium on Separation Science and Technology for Energy Applications, October 18-22, 2009, Gatlinburg, TN, Abstract p.9.
- Y. Basova, M. A. Rahman, M. M. Rahman, S. Ilias, D. Kuila; Novel Bifunctional Nanocatalysts for Aqueous-Phase Reforming⁷, 238th ACS National Meeting, August 16-20, 2009, CATL – 050.