## High-Temperature Nano-Derived Micro-H<sub>2</sub> and -H<sub>2</sub>S Sensors

Christina Wildfire, Engin Ciftyurek, Edward M. Sabolsky

Energy Materials Program Department of Mechanical and Aerospace Engineering West Virginia University

Annual DOE-NETL University Coal Research Project Review May 30-31, 2012

## Outline

- Objectives
- Background and proposed work plan
- Synthesis of nanomaterials
- Evaluation of H<sub>2</sub> nanomaterials
- Micro-patterning techniques
- Stable micro-interdigitized electrodes (μIDEs)
- Conclusions
- Future Work

### **Objectives**

- Develop micro-scale, chemical sensors composed of nano-derived, metal-oxide materials which display stable performance within high-temperature environments (>500°C).
- <u>Short term</u>— Develop high-temperature H<sub>2</sub> and H<sub>2</sub>S sensor using low cost, easily reproducible methods with 3D porous nanomaterials.
- Long term Develop high-temperature micro-sensor arrays to detect gases such as NO<sub>x</sub>, SO<sub>x</sub>, H<sub>2</sub>S, H<sub>2</sub>, HCs.
- Collaboration with NexTech Materials, Ltd. (Lewis Center, OH).

## Proposed Work Plan

#### Task 2.0 Synthesis and Characterization of Nano-Composite Electrodes. Doped-tin

oxide, ceria and zirconate (perovskite and pyrochlore) nanomaterials will be synthesized using hydrothermal and/or glycine-nitrate processes and characterized.

<u>Task 3.0 Lost-Mold Microcasting of the Selective Electrode Structure.</u> Develop microcasting methods for patterning microscale, chemically selective pads on alumina wafers.

<u>Task 4.0 Fabrication of Micro-Sensors and Arrays.</u> Fabricate functional hydrogen micro-sensors and micro-sensor arrays. In addition, stable IDEs for high-temperature applications must be developed.

#### Task 5.0 Micro-Sensor and Sensor Array Testing.

Micro-sensors will be first characterized for baseline resistance using external furnace heat at temperatures ranging from 500°C to at least 1100°C. Key tests include:

- Hydrogen sensitivity and selectivity
- Humidity sensitivity (0-10% H<sub>2</sub>O)
- •*O*<sub>2</sub> requirements (0.1-20%)
- CO cross-sensitivity (ppm-% CO)
- Temperature sensitivity (500-1200°C)
- Poison effects (<200 ppm PH<sub>3</sub>, H<sub>2</sub>S, HCl)

### **Proposed Work Schedule**

| Schedule of tasks and milestones                                                                                                         |                                                                              |   |   |   |   |   |   |   |   |    |    |    |
|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|---|---|---|---|---|---|---|---|----|----|----|
| Took/Milestone                                                                                                                           | Quarter after Project Initiation                                             |   |   |   |   |   |   |   |   |    |    |    |
| 1 ask/ <i>muestone</i>                                                                                                                   | 1                                                                            | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| Task 1. Project Management and Planning (Q1-Q12)                                                                                         |                                                                              |   |   |   |   |   |   |   |   |    |    |    |
| <b>Subtask 1.1:</b> Kick-Off Meeting and Sensor Design at WVU.                                                                           |                                                                              |   |   |   |   |   |   |   |   |    |    |    |
| $\rightarrow$ MS: Sensor and Array Established                                                                                           |                                                                              |   |   |   |   |   |   |   |   |    |    |    |
| Subtask 1.2: Project Meetings and Reporting                                                                                              |                                                                              | 1 |   |   |   | 1 |   |   |   |    |    |    |
| $\rightarrow$ DL: Quarterly Reports                                                                                                      | •                                                                            | • | • | • | • | • | • | • | • | •  | •  | •  |
| $\rightarrow$ DL: Annual Progress Reports                                                                                                |                                                                              |   |   | • |   |   |   | • |   |    |    |    |
| $\rightarrow$ DL: Final Technical Report                                                                                                 |                                                                              |   |   |   |   |   |   |   |   |    |    | •  |
| Task 2. Synthesis and Characterization of Nano-Comp                                                                                      | Task 2. Synthesis and Characterization of Nano-Composite Electrodes. (Q1-Q7) |   |   |   |   |   |   |   |   |    |    |    |
| Subtask 2.1: Synthesis of Zirconate Electrode Compositions                                                                               |                                                                              |   |   |   |   |   |   |   |   |    |    |    |
| $\rightarrow$ MS: Process for synthesizing ABO <sub>3</sub> and A <sub>2</sub> B <sub>2</sub> O <sub>7</sub> nano-<br>powder established |                                                                              | , |   |   |   |   |   |   |   |    |    |    |
| Subtask 2.2: Composite Selective Electrodes                                                                                              |                                                                              | 1 |   |   |   |   |   |   |   |    |    |    |
| $\rightarrow$ DL: NexTech nano-catalyst delivered to WVU for stability testing                                                           |                                                                              |   | • |   |   |   |   |   |   |    |    |    |
| Subtask 2.3: Electrode Characterization                                                                                                  |                                                                              |   |   |   |   |   |   |   |   |    |    |    |
| $\rightarrow$ MS: Stability of $H_2$ and $H_2S$ nano-composites electrodes defined to 1200 $^{\circ}C$                                   |                                                                              |   |   |   |   |   |   |   |   |    |    |    |
| Task 3. Lost-Mold Microcasting of the Selective Electrode Structure. (Q5-Q11)                                                            |                                                                              |   |   |   |   |   |   |   |   |    |    |    |



| Task/Milestone                                                                                           |     | Quarter after Project Initiation |     |      |    |     |              |   |   |    |    |    |
|----------------------------------------------------------------------------------------------------------|-----|----------------------------------|-----|------|----|-----|--------------|---|---|----|----|----|
|                                                                                                          |     | 2                                | 3   | 4    | 5  | 6   | 7            | 8 | 9 | 10 | 11 | 12 |
| Task 3. Lost-Mold Microcasting of the Selective Electr                                                   | ode | Str                              | uct | ure. | (Q | 5-Q | <b>211</b> ) |   |   |    |    |    |
| Subtask 3.1: Micro-Mold Fabrication                                                                      |     |                                  |     |      |    |     |              |   |   |    |    |    |
| $\rightarrow$ MS: Microcasting process defined                                                           |     |                                  |     |      |    |     |              |   |   |    |    |    |
| → DL: Micro-molds delivered to NexTech for commercial microcasting demonstration                         |     |                                  |     |      | •  | •   | •            | • |   |    |    |    |
| <b>Subtask 3.2:</b> Lost-Mold Microcasting and Sintering of Micro-Selective Electrode                    |     |                                  |     |      |    |     | T            |   |   |    |    |    |
| Subtask 3.3: Selective Electrode (SE) Characterization.                                                  |     |                                  |     |      |    |     |              |   |   |    |    |    |
| Task 4. Fabrication of Micro-Sensors and Arrays (Q6-Q12)                                                 |     |                                  |     |      |    |     |              |   |   |    |    |    |
| <b>Subtask 4.1:</b> Pt Interconnect and Counter-Electrode (CE) Deposition                                |     |                                  |     |      |    |     |              |   |   |    |    |    |
| Subtask 4.2: Selective Electrode (SE)<br>Deposition/Sintering                                            |     |                                  |     |      |    | +   |              |   |   |    |    |    |
| $\rightarrow$ MS: Micro-sensor fabricated                                                                |     |                                  |     |      |    |     |              |   |   |    |    |    |
| Subtask 4.3: H <sub>2</sub> -H <sub>2</sub> S Micro-Sensor Array Fabrication                             |     |                                  |     |      |    |     |              |   |   |    |    |    |
| $\rightarrow$ MS: Micro-sensor array fabricated                                                          |     |                                  |     |      |    |     |              |   |   |    |    |    |
| Task 5. Micro-Sensor and Sensor Array Testing (Q8-Q12)                                                   |     |                                  |     |      |    |     |              |   |   |    |    |    |
| <b>Subtask 5.1:</b> Testing of H <sub>2</sub> micro-sensors                                              |     |                                  |     |      |    |     |              |   |   |    |    |    |
| $\rightarrow$ MS: Micro-sensor specification targets achieved                                            |     |                                  |     |      |    |     |              |   |   |    |    |    |
| $\rightarrow$ DL: Delivery of sensors to NexTech for testing                                             |     |                                  |     |      |    |     | •            | • | • | •  | •  |    |
| <b>Subtask 5.2:</b> Testing of H <sub>2</sub> S micro-sensors and H <sub>2</sub> -H <sub>2</sub> S array |     |                                  |     |      |    |     |              |   |   |    |    |    |
| $\rightarrow$ MS: Micro-sensor array specification targets achieved                                      |     |                                  |     |      |    |     |              |   |   |    |    |    |

## **Proposed Milestones**

- •Sensor and Sensor Array design established Q2
- Process for synthesizing nanomaterials established Q4
- •Stability of  $H_2$  and  $H_2S$  nano-composites electrodes defined to  $1200^{\circ}C QG$
- Micro-casting process defined Q6
- Micro-sensors fabricated Q8
- Micro-sensor array fabricated Q9
- Micro-sensor specification targets achieved Q11
- Micro-sensor array specification targets achieved Q12

## **Proposed Deliverables**

- 1) Quarterly and annual progress reports to DOE
- **2)** Subtask 2.2- industrial partner delivers nanomaterials to WVU for stability testing (Q3)
- **3)** Subtask 3.1- Micro-molds delivered to industrial partner for commercial microcasting demonstration (Q5-8)
- **4) Subtask 5.1-** Delivery of micro-sensors to industrial partner for testing *(delivery start of each quarter Q7-Q11)*
- 5) Subtask 5.2- Delivery of arrays to industrial partner for testing (*delivery start of each quarter Q7-Q12*)

### Presentations of this Work

- "High temperature nano-derived hydrogen sensors," Christina Wildfire, Engin Ciftyurek, Katarzyna Sabolsky, Edward M. Sabolsky, European Ceramics Society (ECerS) XII conference in Stockholm, Sweden, June 19-23 2011, Nanomaterials Symposium; INVITED PRESENTATION
- 2. "Performance and Stability of High-Temperature Nano-Derived Hydrogen Sensors," Edward M. Sabolsky, Christina Wildfire, Engin Ciftyurek, Katarzyna Sabolsky, 220th Electrochemical Society Meeting, Boston, MA, Oct. 9-14, 2012; **PRESENTATION**
- "High-Temperature Nanomaterials for Electrochemical Micro-Sensors," Edward M. Sabolsky, Christina Wildfire, Engin Ciftyurek, Energy Materials and Applications (EMA) 2012 Conference in Orlando, FL, January 18-20, 2012, S1: New Frontiers in Electronic Ceramic Structures, Advanced Electronic Material Devices and Circuit Integration; PRESENTATION
- "Nano-Derived, Micro-Chemical Sensors for High-Temperature Applications," Edward M. Sabolsky, Christina Wildfire, Engin Ciftyurek, Katarzyna Sabolsky, 221st Electrochemical Society Meeting in Seattle, WA, May 6-10, 2012; INVITED PRESENTATION
- "High-Temperature Nano-Derived Chemical Micro-Sensors," Edward M. Sabolsky, Christina Wildfire, Engin Ciftyurek, Katarzyna Sabolsky, 10th International Symposium on Ceramic Materials and Components for Energy and Environmental Applications (CMCEE) 2012 in Dresden, Germany, May 20-23, 2012; PRESENTATION



## Publications of this Work

- "Nano-Derived, Micro-Chemical Sensors for High-Temperature Applications," E.M. Sabolsky, C. Wildfire, E. Ciftyurek, K. Sabolsky, ECS Transactions, 45 (3) 495-506 (2012).
- "Platinum Thin Film Electrodes for High Temperature MEMs Applications," E. Ciftyurek, K. Sabolsky, E. M. Sabolsky, *Journal of Microelectromechanical Systems*, Submitted in April 2012
- 3. "Functionally Gradient Zr-Pt Composite Thin Films for Stable High-Temperature Electrodes," E. Ciftyurek, K. Sabolsky, E. M. Sabolsky, *Thin Solid Films*, to be submitted in June 2012
- 4. "Investigatoin of Lanthanum Zirconate Pyrochlores for High Temperature Hydrogen Sensing," Christina Wildfire, Edward M. Sabolsky, Engin Ciftyurek, Katarzyna Sabolsky, Sensors and Actuators B, To be submitted in June
- 5. "High Temperature Semiconducting Hydrogen Sensors Based on Lanthanum Tinanate Materials," Christina Wildfire, Edward M. Sabolsky, Engin Ciftyurek, Katarzyna Sabolsky, Sensors and Actuators B, To be submitted in June
- 6. "Development and Testing of High Temperature Hydrogen Micro-Sensors,"
   Christina Wildfire, Edward M. Sabolsky, Engin Ciftyurek, Katarzyna Sabolsky, Sensors and Actuators B, To be submitted in June



### **Background-** Chemiresistive Sensors



•Metal-oxide's shape, size, composition, and surface characteristics controls the selectivity and sensitivity.



•Nanomaterials provide ultra-high surface area which will enhance encounter of chemical species with sensing material.

## Current High-Temp H<sub>2</sub> Sensors

- Industrial applications above 500°C
- Special interest from DOE for harsh environment sensors (turbine engines, gasifiers, etc)
- Not for RT and ambient safety purposes
- Example of industrial environment

**Slagging gasifier :** (at 1315°C exit)

**39.2% H<sub>2</sub>, 40.3 % CO**, 0.11% CH<sub>4</sub>, 17.3% CO<sub>2</sub>, 0.87% H<sub>2</sub>S+Sulfides, 0.41% H<sub>2</sub>O, **0.78% O<sub>2</sub>** \*

### **Refractory Nanomaterials**

**Pyrochlore** A<sub>2</sub>B<sub>2</sub>O<sub>7</sub> (focus on A= Gd and B=Zr, Sn, Ti)

- Not prone to carbonate formation or CO adsorption (i.e. low CO interference).
- Dopants in A-site (Sm, Y, Yb, Ca, Sr....) increase V<sub>o</sub><sup>"</sup> concentration, and thus, ionic conductivity.
- Mixed-ionic conductor (O<sup>2-</sup> and H<sup>+</sup> conduction).
- Humidity required for proton conduction.
- Ionic and electronic contribution can be controlled by substitution and oxygen partial pressure.
- Highly resistant to sintering and coarsening



### Sensing Mechanisms



## Nanomaterial Synthesis and Sensor Testing

## Synthesis of Nanomaterials



## Structural Characterization (XRD)



Higher temps or longer dwell times needed for pyrochlore phaseBroad peaks due to particle sizes in nano range

## Structural Characterization (XRD)



## Thermal Stability of Nano-GZ

•Particle size increases from 4 nm to <70 nm.

•Structure necks at 1200°C, but nano-network remains highly porous (nanoporous).



## Calcined 1200°C for 10 hours



|                                 | Sintered 1 Hour           | Sintered 24 Hours          |
|---------------------------------|---------------------------|----------------------------|
| BET Surface Area                | 3.5 m²/g (244nm)          | 3.6 m²/g (234nm)           |
| Adsorption SA of pores          | 2.639 m²/g                | 2.793 m²/g                 |
| Volume of pores<br>(adsorption) | 0.0107 cm <sup>3</sup> /g | 0.00654 cm <sup>3</sup> /g |

## **Compositional Testing Protocol**

#### Macro-Sensor Fabrication:

- Alumina substrates polished
- Pt-IDEs sputtered and annealed at 1200°C
- Sensing material printed onto electrodes and sintered at 1200°C (~80-100 μm thick)



Screenprinted Electrode (250 µm finger spacing)



## Macro-Sensor Testing (SnO<sub>2</sub>)

#### WVU Nano-SnO<sub>2</sub> Ordered Agglomerates



•WVU nano-SnO<sub>2</sub> has high level of sensitivity to ppm levels of  $H_2$  at higher temperatures.

•Degradation or "drift" in sensor due to sintering/coarsening (3 nm to ~0.5  $\mu$ m).

### Macro-Sensor Testing $(Gd_{2-x}A_{x}Zr_{2}O_{7})$ <sub>Gd<sub>1.8</sub>Y<sub>0.1</sub>Zr<sub>2</sub>O<sub>7</sub></sub>



- •Doped zirconate sensor shows sensitivity to  $H_2$  in air at 600°C (no humidity).
- •Surface reduction at lower temperature results in n-type dominated response.
- •Steam formation dominates at higher temperature (low H<sub>2</sub> adsorption and reaction with zirconate surface).

H<sub>2</sub>/N<sub>2</sub>, 20% Oxygen

### Compositional Testing (50% $SnO_2$ -50% $Gd_{1.8}Y_{0.1}Zr_2O_7$ )



#### H<sub>2</sub>/N<sub>2</sub>, 20% Oxygen

Dispersed nano-suspensions combined to make composite.
Addition of SnO, allows for U, advantion at higher temperature

- •Addition of SnO<sub>2</sub> allows for H<sub>2</sub> adsorption at higher temperatures.
- •Zirconate limits amount of "drift" seen throughout testing.

### Compositional Testing (10%-SnO<sub>2</sub>-90%-Gd<sub>1.8</sub>Y<sub>0.1</sub>Zr<sub>2</sub>O<sub>7</sub>)

• SnO<sub>2</sub> increases H<sub>2</sub> adsorption.

- Surface O<sup>-</sup> reaction or O<sub>o</sub><sup>x</sup> junction reduction leads to ntype like response.
- Decreased ionic conduction across contact junctions.
- Enough oxygen in atmosphere for reaction without assistance from bulk
- Vacancy conc. change at contacts.
- Oxygen/vacancy diffusion into bulk increases conductivity to cause Ω relaxation.
- Stabilization change is limited due to available oxygen.



1000°C

### Comparison of Composite Sensors

#### 20% Oxygen Atmosphere



•Addition of SnO<sub>2</sub> increases sensitivity at elevated temperatures but decreases stability as temperature increases

10% SnO<sub>2</sub> composite shows more sensitivity than composites with higher % of SnO<sub>2</sub>

## Comparison of Sensing Materials

20% Oxygen Atmosphere



Fully replacing Zr with Sn decreases sensitivity and increases drift
Doping Zr site with 10% SnO<sub>2</sub> results in lower sensitivity than a 10% composite mixture but lower drift

### **Micro-Sensor Fabrication**

- 1) Pattern of high-temperature, stable, thin film electrodes:
  - Platinum (Pt)-based sputtered electrodes.
  - Wet-etch or lift-off.
- 2) Multiple techniques available to pattern sensing nanomaterial particulates in suspension/ink:
  - LIGA
  - Stamping
  - Embossing
  - Micro-casting
  - Dip-pen nanolithography

**Note:** depositing nano-particulates, and not using typical CVD or PVD processes to deposit/pattern thin films.





## Patterning of Nano-Derived Micro-Sensors

## Micro Molding - Nanomaterials

#### **Lost-Mold Micro-casting**

•SU8 is processed into molds onto substrate.

- •Mold is removed during thermolysis and casted material bonds onto substrate.
- •Feature thickness >20  $\mu$ m can be demonstrated.
- •Antolino et al. produced dense free-formed zirconia bars.



**SU8 Micromolds** 

#### **After Thermal Processing**



Antolino et al., Journal of American Ceramics Society, 92 (2009).

### Micro-Casting Nanomaterials

- Negative Lithography for Micro-Molds
  - SU8-25 (Microchem)
    - From 20-90 µm depth depending on spin rate
  - OAI UV Flood Exposure System
  - SU8 developer
- Sensing Material is casted into mold
- Mold is burned off and material is sintered



## Micro-Casting

### Stenciling with screenprinter

- Clean surface obtained
- Controlled pressure, squeegee speed
- Average viscosity of 300 poise at 8/s

### Micro-casting variables:

- Particle size
- Ink dispersion
- Rheology
- Mold geometry/dimensions
- Binder system





### Micro-Casting - SEM

#### •Casted single layer on YSZ substrate



(a)



#### •Casted double layer on YSZ substrate



(b)



(d)

### Micro-Casting–Aqueous Epoxy

- Aqueous epoxy system (Beckopax and Dicynex)
- Evidence of shrinkage
- Uniform particle packing
- Adequate shape retention.



### Micro-Casting – Aqueous Epoxy

Variation of solids loading and sintering temperature

- Compared 12%, 20%, and 30 vol% solids loading in water-based epoxy system
  - Single casting
  - Noticed increased stability with solids loading (left)
- Sintered at 1200°C and 1300°C
  - Significant shrinkage increase with temperature increase (right)



### Wetting Measurements (Aqueous Epoxy)



•Critical particle loading is reached, capillary force pulls liquid in and fights surface tension.

•Therefore, there is a limitation on particle loading due to particle interaction.

### Micro-casting –

Aqueous Acrylate and Terpineol-based Systems

- SEM revealed water based (MAM:MBAM) gel casting did not cup but collapsed due to air bubble (Left)
- SU8 seems to attract terpineol-based ink suspention forming hollow cylinders (Right)



#### MAM:MBAM



#### Terpineol-Ethyl cellulose

### Wetting Measurements (Terpineol-based System)

|                 | 0 wt%  | 5 vol% | 10 vol% | 15 vol% | 25 vol% |
|-----------------|--------|--------|---------|---------|---------|
|                 | 19.341 | 18.670 | 27.001  | 30.352  | 48.720  |
| Alumina (0)     |        |        |         |         | 100     |
|                 | 19.269 | 18.478 | 23.199  | 25.537  | 44.361  |
| <b>ΥSZ (</b> θ) |        | -      |         |         |         |
|                 | 20.732 | 19.646 | 22.576  | 25.904  | 46.425  |
| SU-8 (⊕)        |        | -      | 0       | -       | 200     |

•Binder system wets SU-8 mold very well.

•Wicking of solvent into SU-8 results in well-packed molded features (similar to slip-casting).

## Micro-Patterning Techniques

#### Dip Pen Nanolithography (DPN)

Direct drawing delivers multiple materials onto a single substrate.
Typically used to deposit organic material (DNA, cells, peptides, polymers).



Mirken group (Northwestern Univ.) work with AFM writing in 1999.



Thompson et al., Biosensors and Bioelectronics, 26 (2011).

₩—

Agarwal et al., Thin Solid Films, 519(2010).

### **DPN on Untreated Substrate**



- Ink shows θ≈35° on both substrates.
- Uniform size and shape dots (5-10  $\mu$ m) possible on alumina substrate.
- Ink #2 dots on alumina substrate retain shape through drying.
- Direct-writing of continuous line not possible on neither substrates
  - (contact angle too high, >25° for line drawing).

### **Electroded Ceramic Alumina Substrates**



- Patterning on ceramic (polycrystalline) substrate with metallic electrodes.
- Difficult due to difference in wetting characteristics of each grain and metal vs. ceramic.
- Cu ink pattern on a substrate without a coating shows the ink stumbling over the metallic/ceramic interchanges.
- CTAB coating provides a single chemistry surface over the IDEs on multigrain ceramic substrate.
- CTAB coating enables patterning Cu sol-gel inks.

Fabrication of Stable Micro-IDEs

....

### Background: Electrodes for Electrochemical Sensing Applications



Current sensor technology is limited to operate at low temperature due to •Sensing material composition •Processing

Incapable electrodes

### **Breaks Apart !!!**

# Solution In Order to Hinder Degradation of the Pt Thin Film



### Objectives

- High-temperature degradation of Pt thin films deposited onto alumina substrates.
- 2) Effect of Ti, Ta, Zr, and Hf adhesion layers on hillock formation and coarsening/sintering.
- 3) Zener-pinning effect and combination with suitable adhesion layer.

### **Experimental Procedure: Processing**

#### **Deposition method:**

•DC Magnetron Sputtering deposition on Al<sub>2</sub>O<sub>3</sub> wafer

•Alumina wafer characteristics, Ra=34 nm

#### •Deposition parameters:

•Primary gas pressure (Argon): 60 mTorr

- •Deposition Power : 100 watt
- •Deposition temperature: 200°C

#### •Thicknesses regardless of coating type:

- •Pt=425 nm
- •Adhesion layer=35 nm

| Adhesion layer<br>(35 nm)     | Identification of<br>the coating<br>architecture |  |  |  |  |
|-------------------------------|--------------------------------------------------|--|--|--|--|
| Platinum                      | Pure Pt                                          |  |  |  |  |
| BILAYER COATING ARCHITECTURES |                                                  |  |  |  |  |
| Titanium                      | Ti+Pt                                            |  |  |  |  |
| Tantalum                      | Ta+Pt                                            |  |  |  |  |
| Zirconium                     | Zr+Pt                                            |  |  |  |  |
| Hafnium                       | Hf+Pt                                            |  |  |  |  |
| MULTILAYER COATI              | NG ARCHITECTURES                                 |  |  |  |  |
| Zirconium                     | L-Zr+Pt                                          |  |  |  |  |
| Hafnium                       | Hf+L-Zr+Pt                                       |  |  |  |  |

### **Experimental Procedure: Characterizations**

## High-temperature stability testing:

•Isothermal annealing in N<sub>2</sub> to 800-1200°C for 1-48 hours.

•SEM and XPS completed on annealed sample surface.

#### **Electrical resistivity testing:**

Van der Pauw method

[Philips Research Reports 13 1-9, 1952]





## Definition of Coating Architectures

|      | Platinum Layer [425nm]      | $\longrightarrow$ | Pure Pt         |                       |
|------|-----------------------------|-------------------|-----------------|-----------------------|
| SUO  | Ceramic Substrate           | ]                 |                 |                       |
| atic |                             |                   | BILAYER COATING | <b>GARCHITECTURES</b> |
| s nt | Platinum Layer [425nm]      |                   | Titanium        | Ti D+                 |
| Se   | Adnesion Layer [35nm]       | $\rightarrow$     | manium          | TI+PL                 |
| pre  | Ceramic Substrate           |                   | Tantalum        | Ta+Pt                 |
| e    |                             |                   |                 | <b>— —</b> .          |
|      | Platinum Layer [85 nm]      |                   | Zirconium       | Zr+Pt                 |
| tic  | Intermediate layer [10 nm]  |                   |                 |                       |
| la   | Platinum Layer [85 nm]      |                   | Hathlum         | HI+PI                 |
|      | Intermediate layer [10 nm]  |                   |                 |                       |
| h    | Platinum Layer [85 nm]      | 1                 | MULTILAYE       | R COATING             |
| Sc   | Intermediate layer [10 nm]  | $\longrightarrow$ | ARCHIT          | ECTURES               |
|      | Platinum Layer [85 nm]      |                   |                 |                       |
| Í    | Intermediate layer [10 nm]  |                   | Zirconium       | L-Zr+Pt               |
|      | Platinum Layer [85 nm]      |                   | 11. 6           |                       |
|      | Main Adhesion Layer [35 nm] |                   | натпіит         | HT+L-Zr+Pt            |
|      | Ceramic Substrate           |                   |                 |                       |

48

### Pure Pt on Alumina



### Bilayer Coatings; Ti+Pt and Ta+Pt



LOST OF ADHESION LAYER





### Bilayer Coatings; Zr+Pt

### A few researchers worked with Zr as an adhesion layer ;

T. Maeder, Jpn. J. Appl. Phys. 1993. C. C. Mardare, Appl. Surf. Sci., 2005. M.P Cunha, Ultrasonics Symposium, IEEE .,2007.





### Bilayer Coatings; Hf+Pt



### Bilayer Coatings; Diffusion Behaviors of Hf and Zr



53

### Summary of Adhesion Layer Study

| Adhesion layer (35 nm)                 | Identification of<br>the coating<br>architecture |
|----------------------------------------|--------------------------------------------------|
| Platinum (not reliable >700 °C)        | Pure Pt                                          |
| Titanium (moves all the way up)        | Ti+Pt                                            |
| Tantalum (better but not sufficient )  | Ta+Pt                                            |
| Zirconium (for intermediate layers)    | Zr+Pt                                            |
| Hafnium (very stabile adhesion layer)  | Hf+Pt                                            |
| Layer by Layer Zirconium               | L-Zr+Pt                                          |
| Hafnium based Layer by Layer Zirconium | Hf+L-Zr+Pt                                       |

**Objective 1:** Effect of Ti, Ta, Zr, and Hf adhesion layers on hillock formation and coarsening

#### **Conclusions:**

- All show hillock formation and diffusion
- Zr adequate for adhesion layer
- Hf shows best stability

#### **NEXT STEP:** Multilayer coatings in order to hinder coarsening

### Multilayer Coatings; L-Zr+Pt



Extended high temperature service life !!!



### Multilayer Coatings; Hf+L-Zr+Pt



Better performance.
Durable adhesion layer.
The most stabile intermetallic, HfPt<sub>3</sub>.

[P. Ficalora et al. Department of the Navy Mar. 1971]



### Multilayer Coatings; Hf+L-Zr+Pt



Broadening due to intermetallic formation of HfPt<sub>3</sub> and ZrPt<sub>3</sub>.
(~0.67%) higher than the value found in the literature work for HfPt<sub>3</sub>.

[Wertheim et al. Phys. Rev. B. 1989]

**XPS Detailed Spectrum of Pt 4f Doublet** 

### Summary: Improvement

1 hour 1200°C, ρ=∞(10<sup>-9</sup> Ω.m)

### Pure Pt

48 hours 1200°C, ρ=624 (10<sup>-9</sup> Ω.m)

#### Hf+L-Zr+Pt

### Summary: High-Temperature Electrode

## Simple Lift-off process for electrode manufacturing.



## Micro-Sensor Testing $(10\%-SnO_2-90\%-Gd_{1.8}Y_{0.1}Zr_2O_7)$



- •Micro-sensor shows higher sensitivity to H<sub>2</sub> and more stability than macro-sensor.
- •Response time also decreases at higher temperature



## Micro Casting of SnO<sub>2</sub>





100 um



### Summary

- Hydrothermal processes for synthesis of ionic and mixedconducting zirconate, stannate, and titanate pyrochlores (3-10 nm).
- Screenprinted macro-sensors of composite nanomaterials sense 500-4000 ppm H<sub>2</sub> (in air) at 600-1000°C.
- Zirconate and MOS/zirconate composites displayed enhanced stability
  - From 0.792%/hr to 0.016%/hr
- Developed Pt-based micro-IDEs that are stable to 1200°C.
- Initiated development of micro-casting, templated hydrothermal, and DPN processes for fabricating microsensor arrays.

### Future Work

•Impedance testing to further understand conduction mechanisms of sensing materials

- •CO cross-sensitivity testing
- •Synthesis and test materials for NO<sub>x</sub> sensing
- •Co-Sputter deposition of adhesion material with platinum in order to obtain infinite layer structure and characterization
- •AEM and TEM characterization for further information about Hf+L-Zr+Pt.

## Acknowledgments

- Funding by US Department of Energy, University Coal Research (UCR) program under contract DE-FE0003872.
- Adrienne McGraw, Zachary Santer
- Oak Ridge Institution for Science and Education (ORISE)
- ORAU (Oak Ridge Associated Universities)
- WVU Shared Research Facilities.
- The authors also would like the acknowledge Dr. Kolin Brown, Dr. Wei Ding. Mr. Harley Hart for their assistance.



### Additional Information

. .







Detailed XPS scan for the (a) Hf 4f peak positions in the Hf/L-Zr+Pt sample (b) Zr 3d peak positions in the L-Zr+Pt sample, both annealed at 1200°C for 48 h.



Detailed XPS scan for the (a) Hf 4f peak positions in the Hf/L-Zr+Pt sample (b) Zr 3d peak positions in the L-Zr+Pt sample, both annealed at 1200°C for 48 h.



Room temp. sputtering with possible lowest power and highest possible pressure to maximize the mean freem path

Transition Region

Highest possible sputtering temperature, lowest possible sputtering pressure

### Compositional Testing $(Gd_{2-x}A_{x}Zr_{2}O_{7})$



H<sub>2</sub>/N<sub>2</sub>, 0% Oxygen, 0% Humidity

Sensitive to H<sub>2</sub> down to 500 ppm level with less than 1 min response time.
Surface defect state altered in reducing atmosphere (response independent of H<sub>2</sub> concentration).

•Spike in resistance due surface reduction and stabilization due to bulk oxygen movement and reordering at surface/junction?