Uncertainty Quantification Tools for Multiphase Flow Simulations using MFIX

Formulation of an Uncertainty Quantification Approach Based on Direct Quadrature Sampling of the Parameter Space

A. Passalacqua¹, P. Vedula², R. O. Fox¹

¹Iowa State University, Department of Chemical and Biological Engineering, Ames, IA ²University of Oklahoma, School of Aerospace and Mechanical Engineering, Norman, OK

Project Manager: Vito Cedro

University Coal Research and Historically Black Colleges and Universities and Other Minority Institutions Contractors Review Conference

Pittsburgh, May 30th – 31st 2012

A. Passalacqua, P. Vedula, R. O. Fox (ISU - OU)

Uncertainty quantification

Outline

2 Project objectives and milestones

3 Technical progress

- Formulation of the quadrature-based UQ procedure
- Example applications

Future work

Outline

Introduction and background

2) Project objectives and milestones

3 Technical progress

- Formulation of the quadrature-based UQ procedure
- Example applications

Future work

Background and motivations

Eulerian multiphase models for gas-particle flows

- Widely used in both academia and industry
- Computationally efficient
- Applicable to real-world cases (gasifiers, combustors, ...)
- Directly provide averaged quantities of interest in design and optimization studies

Need of uncertainty quantification

• Study how the models propagate uncertainty from inputs to outputs

Main objectives

- Develop an efficient quadrature-based uncertainty quantification procedure
- Apply such a procedure to multiphase gas-particle flow simulations considering parameters of interest in applications

A. Passalacqua, P. Vedula, R. O. Fox (ISU - OU)

Uncertainty quantification

Typical steps in a simulation project with MFIX

A. Passalacqua, P. Vedula, R. O. Fox (ISU - OU)

Models and uncertainty

- Models present a strongly non-linear relation between inputs and outputs
- Input parameters are affected by uncertainty
 - Experimental inputs
 - Experimental errors
 - Difficult measurements
 - Theoretical assumptions
 - Model assumptions might introduce uncertainty
- Need to quantify the effect of uncertainty on the simulation results
 - Uncertainty propagation from inputs to outputs of the model
 - Multiphase models are complex: non-intrusive approach
 - Generate a set of samples of the results of the original models
 - Use the information collected from samples to calculate statistics of the system response
 - Key element is the sampling procedure: efficiency

Outline

Project objectives and milestones

3 Technical progress

- Formulation of the quadrature-based UQ procedure
- Example applications

Future work

Project tasks

A. Passalacqua, P. Vedula, R. O. Fox (ISU - OU)

Project milestones and current status

Milestone n.	Description	Due on	Status
1	Submission of project management plan	Dec. 30, 2011	Completed
2	Formulation of the quadrature-based UQ procedure	Jul. 1, 2012	On time
3	Validation of the quadrature-based UQ procedure on simplified test-cases	Oct. 1, 2012	Starts on Jul. 2, 2012
4	Implementation of the quadrature-based UQ algorithm into MFIX	May 31, 2013	Starts on Oct. 2, 2012
5	Development of automated tools for processing input/output data	Oct. 1, 2013	Starts on May 3, 2013
6	Development of a Validation Criterion for MFIX Simulations	Jan. 3, 2014	Starts on Oct. 10, 2013
7	UQ on bubbling fluidized bed simulations	Mar. 31, 2014	Starts on Oct. 10, 2013
8	UQ on riser flow simulations	Sept. 1, 2014	Starts on Apr. 1, 2014
9	Preparation of final report	Sept 31, 2014	Starts on Sept. 1, 2014

Outline

2) Project objectives and milestones

3 Technical progress

- Formulation of the quadrature-based UQ procedure
- Example applications

Future work

Basic concepts

- We study propagation of uncertainty from inputs to outputs
- The distribution of the values (PDF) of the uncertain parameters is assumed to be known
 - Uniform
 - Gaussian
 - ...
- The moments (statistics) of the model results are the quantity of interest
 - Low-order statistics for practical purposes (mean, variance, ...)
 - PDF of the response

Quadrature-based uncertainty quantification - 1D case

- We start considering a simplified case
 - Probability space $\mathcal{P}(\Omega, \mathcal{F}, P)$, with Ω a sample space, \mathcal{F} a σ -algebra and P a probability measure.
 - One random variable (uncertain parameter) ξ
 - A random process $u(\xi, x)$ (our model)
- The objective is to compute the moments of the random process:

$$m_n = \int_{\Omega} u(\xi, x)^n p(\xi) \mathrm{d}\xi$$

Direct quadrature approach

- Sample Ω using Gaussian quadrature formulae
- Evaluate the model in correspondence of each quadrature node (find abscissas)
- Approximate moments directly in terms of the quadrature weights and abscissas

Quadrature-based uncertainty quantification - 1D case

 If p(ξ) is considered as the weight function of a Gaussian quadrature formula, the moments about the origin of the response can be approximated as

$$m_n = \int_{\Omega} u(\xi, x)^n p(\xi) \mathrm{d}\xi = \sum_{i=1}^{\mathrm{M}} w_i(x) \left[u(\xi_i, x) \right]^n$$

being

- M the number of nodes
- $w_i(x)$ the quadrature weights
- ξ_i the quadrature nodes

Weight functions

The form of $p(\xi)$ depends on the assumed probability distribution function of the uncertain parameter (uniform, Gaussian, ...)

A. Passalacqua, P. Vedula, R. O. Fox (ISU - OU)

Summary of the 1D procedure

Quadrature-based UQ - Multivariate case

- We consider now a multi-variate case:
 - *N* uncertain parameters $\boldsymbol{\xi} = \{\xi_1, \xi_2, \dots, \xi_N\}$
 - Joint PDF $p(\xi_1, \xi_2, \dots, \xi_N)$
- The moments of the response *u* are then

$$\langle u^n(\boldsymbol{\xi})
angle = \int_{\mathbb{R}^N} [u(\boldsymbol{\xi})]^n p(\boldsymbol{\xi}) \mathrm{d} \boldsymbol{\xi}$$

Conditional probability

• The joint PDF can be re-written in terms of conditional PDF's as

 $p(\xi_1, \dots, \xi_N) = p(\xi_N | \xi_1, \dots, \xi_{N-1}) p(\xi_{N-1} | \xi_1, \dots, \xi_{N-2}) \cdot \dots \cdot p(\xi_2 | \xi_1) p(\xi_1)$

• It degenerates in the product of the marginal PDF's in the case of independent variables.

A. Passalacqua, P. Vedula, R. O. Fox (ISU - OU)

Quadrature-based UQ - Multivariate case

- We consider a case with three (N = 3) random variables $\boldsymbol{\xi} = \xi_1, \xi_2, \xi_3$.
- The joint PDF is

$$p(\xi_1,\xi_2,\xi_3) = p(\xi_3|\xi_1,\xi_2)p(\xi_2|\xi_1)p(\xi_1)$$

Conditional moments

$$\langle \xi_3^k \rangle(\xi_1, \xi_2) = \int_{\mathbb{R}} \xi_3^k p(\xi_3 | \xi_1, \xi_2) d\xi_3 \quad \langle \xi_2^j \rangle(\xi_1) = \int_{\mathbb{R}} \xi_2^j p(\xi_2 | \xi_1) d\xi_2$$

Pure moments

$$m_{i,j,0} = \int_{\mathbb{R}^2} \xi_1^i \xi_2^j p(\xi_1, \xi_2) d\xi_1 d\xi_2 = \int_{\mathbb{R}} \xi_1^i \langle \xi_2^j \rangle(\xi_1) p(\xi_1) d\xi_1 \xi_3$$

$$m_{i,j,k} = \int_{\mathbb{R}^3} \xi_1^i \xi_2^j \xi_3^k p(\xi_1, \xi_2, \xi_3) d\xi_1 d\xi_2 d\xi_3 = \int_{\mathbb{R}^2} \xi_1^i \xi_2^j \langle \xi_3^k \rangle(\xi_1, \xi_2) p(\xi_1, \xi_2) d\xi_1 d\xi_2$$

A. Passalacqua, P. Vedula, R. O. Fox (ISU - OU)

Conditional quadrature approximation

• Use M_1 -point 1-D quadrature to sample ξ_1 :

$$p(\xi_1) = \sum_{l_1=1}^{M_1} n_{l_1} \delta(\xi_1 - \xi_{1,l_1})$$

• Weights n_{l_1} and nodes ξ_{1,l_1}

Pind the conditional moments

$$\langle \xi_2^j \rangle_{l_1}, j = 1, \ldots, 2M_2 - 1, \ \forall l_1$$

- Use M_2 -point 1-D quadrature to find weights n_{l_1,l_2} and nodes ξ_{2,l_1,l_2}
- Solution Find the conditional moments

$$\langle \xi_3^k \rangle_{l_1, l_2}, \ k = 1, \dots, 2M_3 - 1 \ \forall l_1, l_2$$

• Use M_3 -point 1-D quadrature to find weights n_{l_1,l_2,l_3} and nodes ξ_{3,l_1,l_2,l_3}

17/41

Conditional quadrature approximation

• The joint PDF is then approximated as:

$$p(\boldsymbol{\xi}) = \sum_{l_1=1}^{M_1} \sum_{l_2=1}^{M_2} \sum_{l_3=1}^{M_3} n_{l_1} n_{l_1, l_2} n_{l_1, l_2, l_3} \delta(\xi_1 - \xi_{1, l_1}) \delta(\xi_2 - \xi_{2, l_1, l_2}) \delta(\xi_3 - \xi_{3, l_1, l_2, l_3})$$

• The moments of the system response are computed as:

$$\langle u^{n}(\boldsymbol{\xi}) \rangle = \int_{\mathbb{R}^{3}} [u(\boldsymbol{\xi})]^{n} p(\boldsymbol{\xi}) d\boldsymbol{\xi}$$

= $\sum_{l_{1}=1}^{M_{1}} \sum_{l_{2}=1}^{M_{2}} \sum_{l_{3}=1}^{M_{3}} n_{l_{1}} n_{l_{1},l_{2},l_{3}} [u(\xi_{1,l_{1}},\xi_{2,l_{1},l_{2}},\xi_{3,l_{1},l_{2},l_{3}})]^{n}$

Summary: Quadrature-based uncertainty quantification

- Multivariate sampling method for the joint-PDF of the input parameters
 - Degenerates in 1D quadrature if only one uncertain parameter is considered
 - Falls back to a traditional tensor product if the uncertain parameters are independent
- Equivalent to stochastic collocation (Yoon at al., 2010, AIAA 2010-8171)
- High-order convergence of the moments of the response

Example applications

Objectives

- Validate the UQ procedure with simple test cases
- Study the convergence of the moments of the response in cases of interest
- Test cases
 - Developing channel flow
 - Simple test case from the literature
 - Reference results
 - Low computational cost: convergence study
 - Oblique shock problem
 - Discontinuous solution (typical in multiphase flows!)
 - Performance of the procedure in presence of discontinuities

Example applications

Developing channel flow

Properties

- L/D = 6
- $\operatorname{Re} = DU/\nu_0 = 81.24$
- $\sigma(\nu) = 0.3\nu_0$
- Uniform inlet (Le Mâitre et. al., 2011)

- Mesh: 65 x 256 cells
- Steady state solution
- Convergence criterion: residuals below 1.0x10⁻¹²
- Incompressible solver: simpleFoam (OpenFOAM(R))

Performed study

- Convergence of the moments:
 - Absolute error
 - Moments up to 9th order
- Statistics of the response

Convergence of the moments

• Absolute error $e_{abs,n,i} = |m_{n,i} - m_{n,1000}|$, assuming the moments obtained with 1000 samples are exact.

Samples	$e_{\mathrm{abs},0,i}$	$e_{\mathrm{abs},1,i}$	$e_{\mathrm{abs},2,i}$	$e_{\mathrm{abs},3,i}$
3	4.440×10^{-16}	$5.588 imes 10^{-6}$	8.646×10^{-5}	9.486×10^{-4}
5	$7.771 imes 10^{-16}$	$2.389 imes10^{-8}$	$2.184 imes 10^{-7}$	1.401×10^{-6}
10	$5.551 imes 10^{-16}$	$3.018 imes 10^{-9}$	$3.064 imes 10^{-8}$	$2.335 imes 10^{-7}$
20	$4.440 imes 10^{-16}$	$7.214 imes 10^{-12}$	2.036×10^{-11}	8.278×10^{-10}
40	$8.881 imes 10^{-16}$	$6.814 imes 10^{-10}$	$6.813 imes 10^{-9}$	$5.110 imes 10^{-8}$
60	$9.992 imes 10^{-16}$	$4.376 imes 10^{-12}$	$7.179 imes 10^{-11}$	7.522×10^{-10}
80	$8.881 imes 10^{-16}$	$5.182 imes 10^{-11}$	$5.152 imes 10^{-10}$	3.839×10^{-9}
100	$7.771 imes 10^{-16}$	$6.509 imes 10^{-11}$	$6.531 imes 10^{-10}$	$4.918 imes 10^{-9}$

Table: Absolute error of m_0, m_1, m_2 , m_3 as a function of the number of samples.

Convergence of the moments

Samples	$e_{\mathrm{abs},4,i}$	$e_{\mathrm{abs},5,i}$	$e_{\mathrm{abs},6,i}$
3	$8.877 imes 10^{-3}$	7.542×10^{-2}	5.994×10^{-1}
5	$6.990 imes 10^{-6}$	2.241×10^{-5}	4.571×10^{-5}
10	$1.583 imes 10^{-6}$	$1.007 imes 10^{-5}$	6.161×10^{-5}
20	$9.895 imes 10^{-9}$	$8.844 imes 10^{-8}$	$6.855 imes 10^{-7}$
40	$3.407 imes 10^{-7}$	$2.130 imes 10^{-6}$	$1.278 imes 10^{-5}$
60	$6.465 imes 10^{-9}$	$4.961 imes 10^{-8}$	$3.539 imes 10^{-7}$
80	$2.540 imes10^{-8}$	$1.574 imes10^{-7}$	$9.356 imes 10^{-7}$
100	$3.295 imes 10^{-8}$	$2.070 imes 10^{-7}$	$1.250 imes 10^{-6}$

Table: Absolute error of m_4 , m_5 , m_6 as a function of the number of samples.

Convergence of the moments

Samples	$e_{\mathrm{abs},7,i}$	$e_{\mathrm{abs},8,i}$	$e_{\mathrm{abs},9,i}$
3	4.534×10^{0}	3.300×10^{1}	2.328×10^{2}
5	1.718×10^{-3}	$2.107 imes 10^{-2}$	$2.029 imes 10^{-1}$
10	$3.667 imes 10^{-4}$	$2.139 imes 10^{-3}$	$1.230 imes 10^{-2}$
20	$4.876 imes 10^{-6}$	$3.271 imes 10^{-5}$	$2.104 imes 10^{-4}$
40	$7.463 imes 10^{-5}$	$4.268 imes 10^{-4}$	2.402×10^{-3}
60	2.398×10^{-6}	$1.565 imes 10^{-5}$	$9.920 imes 10^{-5}$
80	$5.399 imes 10^{-6}$	$3.049 imes 10^{-5}$	1.692×10^{-4}
100	7.341×10^{-6}	$4.226 imes 10^{-5}$	$2.397 imes 10^{-4}$

Table: Absolute error of m_7 , m_8 , m_9 as a function of the number of samples.

Conclusions

- Mean and variance rapidly converge (less than 10 samples).
- Twenty samples provide the best trade-off in terms of moments convergence and efficiency for this case

A. Passalacqua, P. Vedula, R. O. Fox (ISU - OU)

Uncertainty quantification

Low-order statistics

• Variance (Distance from the mean)

$$\sigma^2 = \frac{m_2}{m_0} - \mu^2,$$

• Skewness (Symmetry of the distribution)

$$\gamma_1 = \frac{\mu_3}{\sigma^3} = \frac{m_3/m_0 - 3\mu m_2/m_0 + 2\mu^3}{\sigma^3},$$

• Kurtosis (Importance of tails)

$$\gamma_2 = \frac{\mu_4}{\sigma^4} = \frac{m_4/m_0 - 4\mu m_3/m_0 + 6\mu^2 m_2/m_0 - 3\mu^4}{\sigma^4}.$$

- μ_i : central moments
- m_i : moments about the origin

Velocity mean

Velocity variance

Velocity skewness

Velocity kurtosis

The oblique shock problem

•
$$Ma = |U|/a = 3$$

• $Ma \in [2.7, 3.3]$
• $\tan \theta = 2 \cot \beta \frac{Ma_1^2 \sin^2 \beta - 1}{Ma_1^2 (\gamma + \cos(2\beta) + 2)}$

- Mesh: 640 x 320 cells
- Unsteady simulation (max CFL = 0.2)
- Compressible solver: rhoCentralFoam (OpenFOAM®)

Low-order statistics

Table: Analytical and UQ prediction of the shock angle - 20 samples A. Passalacqua, P. Vedula, R. O. Fox (ISU - OU)

Uncertainty quantification

DOE-UCR Review Meeting 2012

36/41

Example applications

Absolute error of the statistics - 20 samples

$$|\mu(U_x)_{20} - \mu(U_x)_{100}| \qquad \qquad |\sigma^2(U_x)_{20} - \sigma^2(U_x)_{100}|$$

A. Passalacqua, P. Vedula, R. O. Fox (ISU - OU)

Uncertainty quantification

DOE-UCR Review Meeting 2012 37 / 41

Outline

2 Project objectives and milestones

3 Technical progress

- Formulation of the quadrature-based UQ procedure
- Example applications

Future work

Future work

- Reconstruction of the PDF of the system response (in progress)
- Validation of the quadrature-based UQ procedure on a set of simplified test-cases (in progress)
- Implementation of the procedure in suitable form to be used with MFIX
- Development of automation tools
- Applications to gas-particle flow in fluidized beds and risers

Personnel and publications

Personnel

- 1 Post-doc (Alberto Passalacqua) from October 2011
- 1 Ph.D. student (Xiaofei Hu) from June 2012

Publications

• A. Passalacqua, P. Vedula, R.O. Fox, A quadrature-based uncertainty quantification procedure with applications to computational fluid dynamics, In preparation.

Thanks for your attention!

Questions?

A. Passalacqua, P. Vedula, R. O. Fox (ISU - OU)

Uncertainty quantification

DOE-UCR Review Meeting 2012 41 / 41