Uncertainty Quantification Tools for Multiphase Flow Simulations using MFIX
Formulation of an Uncertainty Quantification Approach Based on Direct Quadrature Sampling of the Parameter Space

A. Passalacqua1, P. Vedula2, R. O. Fox1

1Iowa State University, Department of Chemical and Biological Engineering, Ames, IA
2University of Oklahoma, School of Aerospace and Mechanical Engineering, Norman, OK

Project Manager: Vito Cedro

University Coal Research and Historically Black Colleges and Universities and Other Minority Institutions Contractors Review Conference

Pittsburgh, May 30th – 31st 2012
Outline

1. Introduction and background
2. Project objectives and milestones
3. Technical progress
 - Formulation of the quadrature-based UQ procedure
 - Example applications
4. Future work
Outline

1. Introduction and background

2. Project objectives and milestones

3. Technical progress
 - Formulation of the quadrature-based UQ procedure
 - Example applications

4. Future work
Introduction and background

Background and motivations

Eulerian multiphase models for gas-particle flows

- Widely used in both academia and industry
- Computationally efficient
- Applicable to real-world cases (gasifiers, combustors, . . .)
- Directly provide averaged quantities of interest in design and optimization studies

Need of uncertainty quantification

- Study how the models propagate uncertainty from inputs to outputs

Main objectives

- Develop an efficient quadrature-based uncertainty quantification procedure
- Apply such a procedure to multiphase gas-particle flow simulations considering parameters of interest in applications
Typical steps in a simulation project with MFIX

1. Define model geometry
2. Specify model parameters (phase properties, sub-models)
3. MFIX
4. Phase velocities $U(t)$
5. Phase volume fractions $\alpha(t)$
6. Granular temperature $\Theta(t)$
7. Time average
8. Comparison with experiments
9. Design optimization
Models and uncertainty

- Models present a strongly non-linear relation between inputs and outputs
- Input parameters are affected by uncertainty
 - Experimental inputs
 - Experimental errors
 - Difficult measurements
 - Theoretical assumptions
 - Model assumptions might introduce uncertainty
- Need to quantify the effect of uncertainty on the simulation results
 - Uncertainty propagation from inputs to outputs of the model
 - Multiphase models are complex: non-intrusive approach
 - Generate a set of samples of the results of the original models
 - Use the information collected from samples to calculate statistics of the system response
 - Key element is the sampling procedure: efficiency
Outline

1. Introduction and background

2. Project objectives and milestones

3. Technical progress
 - Formulation of the quadrature-based UQ procedure
 - Example applications

4. Future work
Uncertainty quantification tools for multiphase gas-solid flow simulations using MFIx

Task 1.0
Project management plan

Task 2.0
Formulation of robust non-intrusive quadrature-based UQ approach

Task 2.1
Formulation of the quadrature-based UQ procedure

Task 2.2
Validation on a set of simplified test cases

Task 3.0
Implementation of the quadrature-based procedure into MFIx

Task 3.1
Implementation of the quadrature-based UQ algorithm

Task 3.2
Development of tools for automated sample processing and data post-processing

Task 4.0
Application to gas-particle flow test cases

Task 4.1
Development of a validation criterion for MFIx simulations

Task 4.2
UQ on bubbling fluidized bed simulations

Task 4.3
UQ on riser flow simulations
Project milestones and current status

<table>
<thead>
<tr>
<th>Milestone n.</th>
<th>Description</th>
<th>Due on</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Submission of project management plan</td>
<td>Dec. 30, 2011</td>
<td>Completed</td>
</tr>
<tr>
<td>2</td>
<td>Formulation of the quadrature-based UQ procedure</td>
<td>Jul. 1, 2012</td>
<td>On time</td>
</tr>
<tr>
<td>7</td>
<td>UQ on bubbling fluidized bed simulations</td>
<td>Mar. 31, 2014</td>
<td>Starts on Oct. 10, 2013</td>
</tr>
<tr>
<td>8</td>
<td>UQ on riser flow simulations</td>
<td>Sept. 1, 2014</td>
<td>Starts on Apr. 1, 2014</td>
</tr>
</tbody>
</table>
Outline

1. Introduction and background
2. Project objectives and milestones
3. Technical progress
 - Formulation of the quadrature-based UQ procedure
 - Example applications
4. Future work
Basic concepts

- We study propagation of uncertainty from inputs to outputs.
- The distribution of the values (PDF) of the uncertain parameters is assumed to be known:
 - Uniform
 - Gaussian
 - ...
- The moments (statistics) of the model results are the quantity of interest:
 - Low-order statistics for practical purposes (mean, variance, ...)
 - PDF of the response
Quadrature-based uncertainty quantification - 1D case

- We start considering a simplified case
 - Probability space \(P(\Omega, F, P) \), with \(\Omega \) a sample space, \(F \) a \(\sigma \)-algebra and \(P \) a probability measure.
 - One random variable (uncertain parameter) \(\xi \)
 - A random process \(u(\xi, x) \) (our model)
- The objective is to compute the moments of the random process:

\[
m_n = \int_{\Omega} u(\xi, x)^n p(\xi) d\xi
\]

Direct quadrature approach

- Sample \(\Omega \) using Gaussian quadrature formulae
- Evaluate the model in correspondence of each quadrature node (find abscissas)
- Approximate moments directly in terms of the quadrature weights and abscissas
Quadrature-based uncertainty quantification - 1D case

- If $p(\xi)$ is considered as the weight function of a Gaussian quadrature formula, the moments about the origin of the response can be approximated as

$$m_n = \int_\Omega u(\xi, x)^n p(\xi) d\xi = \sum_{i=1}^{M} w_i(x) [u(\xi_i, x)]^n$$

being

- M the number of nodes
- $w_i(x)$ the quadrature weights
- ξ_i the quadrature nodes

Weight functions

The form of $p(\xi)$ depends on the assumed probability distribution function of the uncertain parameter (uniform, Gaussian, ...).
Summary of the 1D procedure

Model $u(\xi_i, x)$

M-node quadrature approximation

M model evaluations

Calculation of the moments of u

Statistics of the response
Quadrature-based UQ - Multivariate case

- We consider now a multi-variate case:
 - N uncertain parameters $\xi = \{\xi_1, \xi_2, \ldots, \xi_N\}$
 - Joint PDF $p(\xi_1, \xi_2, \ldots, \xi_N)$
- The moments of the response u are then

$$
\langle u^n(\xi) \rangle = \int_{\mathbb{R}^N} [u(\xi)]^n p(\xi) d\xi
$$

Conditional probability

- The joint PDF can be re-written in terms of conditional PDF’s as

$$
p(\xi_1, \ldots, \xi_N) = p(\xi_N|\xi_1, \ldots, \xi_{N-1}) p(\xi_{N-1}|\xi_1, \ldots, \xi_{N-2}) \cdots p(\xi_2|\xi_1) p(\xi_1)
$$
- It degenerates in the product of the marginal PDF’s in the case of independent variables.
Quadrature-based UQ - Multivariate case

- We consider a case with three \((N = 3)\) random variables \(\xi = \xi_1, \xi_2, \xi_3\).
- The joint PDF is

\[
p(\xi_1, \xi_2, \xi_3) = p(\xi_3|\xi_1, \xi_2)p(\xi_2|\xi_1)p(\xi_1)
\]

Conditional moments

\[
\langle \xi_3^k \rangle (\xi_1, \xi_2) = \int_{\mathbb{R}} \xi_3^k p(\xi_3|\xi_1, \xi_2) d\xi_3 \quad \langle \xi_2^j \rangle (\xi_1) = \int_{\mathbb{R}} \xi_2^j p(\xi_2|\xi_1) d\xi_2
\]

Pure moments

\[
m_{i,j,0} = \int_{\mathbb{R}^2} \xi_1^i \xi_2^j p(\xi_1, \xi_2) d\xi_1 d\xi_2 = \int_{\mathbb{R}} \xi_1^i \langle \xi_2^j \rangle (\xi_1) p(\xi_1) d\xi_1 \xi_3
\]

\[
m_{i,j,k} = \int_{\mathbb{R}^3} \xi_1^i \xi_2^j \xi_3^k p(\xi_1, \xi_2, \xi_3) d\xi_1 d\xi_2 d\xi_3 = \int_{\mathbb{R}^2} \xi_1^i \xi_2^j \langle \xi_3^k \rangle (\xi_1, \xi_2) p(\xi_1, \xi_2) d\xi_1 d\xi_2
\]
Conditional quadrature approximation

1. Use M_1-point 1-D quadrature to sample ξ_1:

$$p(\xi_1) = \sum_{l_1=1}^{M_1} n_{l_1} \delta(\xi_1 - \xi_{1,l_1})$$

- Weights n_{l_1} and nodes ξ_{1,l_1}

2. Find the conditional moments

$$\langle \xi_{2}^j \rangle_{l_1}, j = 1, \ldots, 2M_2 - 1, \forall l_1$$

- Use M_2-point 1-D quadrature to find weights n_{l_1,l_2} and nodes ξ_{2,l_1,l_2}

3. Find the conditional moments

$$\langle \xi_{3}^k \rangle_{l_1,l_2}, k = 1, \ldots, 2M_3 - 1 \forall l_1, l_2$$

- Use M_3-point 1-D quadrature to find weights n_{l_1,l_2,l_3} and nodes ξ_{3,l_1,l_2,l_3}
Conditional quadrature approximation

- The joint PDF is then approximated as:

\[p(\xi) = \sum_{l_1=1}^{M_1} \sum_{l_2=1}^{M_2} \sum_{l_3=1}^{M_3} n_{l_1,n_{l_1,l_2}n_{l_1,l_2,l_3}\delta(\xi_1 - \xi_{1,l_1})\delta(\xi_2 - \xi_{2,l_1,l_2})\delta(\xi_3 - \xi_{3,l_1,l_2,l_3})} \]

- The moments of the system response are computed as:

\[\langle u^n(\xi) \rangle = \int_{\mathbb{R}^3} [u(\xi)]^n p(\xi) \, d\xi \]

\[= \sum_{l_1=1}^{M_1} \sum_{l_2=1}^{M_2} \sum_{l_3=1}^{M_3} n_{l_1,n_{l_1,l_2}n_{l_1,l_2,l_3} [u(\xi_{1,l_1}, \xi_{2,l_1,l_2}, \xi_{3,l_1,l_2,l_3})]^n} \]
Quadrature-based UQ - Visualization of a bivariate case
Quadrature-based UQ - Visualization of a bivariate case
Quadrature-based UQ - Visualization of a bivariate case

\[p(\xi_1, \xi_2) \]
Quadrature-based UQ - Visualization of a bivariate case
Quadrature-based UQ - Visualization of a bivariate case
Summary: Quadrature-based uncertainty quantification

- Multivariate sampling method for the joint-PDF of the input parameters
 - Degenerates in 1D quadrature if only one uncertain parameter is considered
 - Falls back to a traditional tensor product if the uncertain parameters are independent
- Equivalent to stochastic collocation (Yoon at al., 2010, AIAA 2010-8171)
- High-order convergence of the moments of the response
Example applications

- **Objectives**
 - Validate the UQ procedure with simple test cases
 - Study the convergence of the moments of the response in cases of interest

- **Test cases**
 - Developing channel flow
 - Simple test case from the literature
 - Reference results
 - Low computational cost: convergence study
 - Oblique shock problem
 - Discontinuous solution (typical in multiphase flows!)
 - Performance of the procedure in presence of discontinuities
Developing channel flow

Properties
- \(L/D = 6 \)
- \(\text{Re} = DU/\nu_0 = 81.24 \)
- \(\sigma(\nu) = 0.3\nu_0 \)
- Uniform inlet
 (Le Mâitre et. al., 2011)

Mesh: 65 x 256 cells
Steady state solution
Convergence criterion: residuals below \(1.0 \times 10^{-12} \)
Incompressible solver: simpleFoam
(OpenFOAM®)

Performed study
- Convergence of the moments:
 - Absolute error
 - Moments up to 9th order
- Statistics of the response
Convergence of the moments

- Absolute error $e_{\text{abs},n,i} = |m_{n,i} - m_{n,1000}|$, assuming the moments obtained with 1000 samples are exact.

<table>
<thead>
<tr>
<th>Samples</th>
<th>$e_{\text{abs},0,i}$</th>
<th>$e_{\text{abs},1,i}$</th>
<th>$e_{\text{abs},2,i}$</th>
<th>$e_{\text{abs},3,i}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>4.440×10^{-16}</td>
<td>5.588×10^{-6}</td>
<td>8.646×10^{-5}</td>
<td>9.486×10^{-4}</td>
</tr>
<tr>
<td>5</td>
<td>7.771×10^{-16}</td>
<td>2.389×10^{-8}</td>
<td>2.184×10^{-7}</td>
<td>1.401×10^{-6}</td>
</tr>
<tr>
<td>10</td>
<td>5.551×10^{-16}</td>
<td>3.018×10^{-9}</td>
<td>3.064×10^{-8}</td>
<td>2.335×10^{-7}</td>
</tr>
<tr>
<td>20</td>
<td>4.440×10^{-16}</td>
<td>7.214×10^{-12}</td>
<td>2.036×10^{-11}</td>
<td>8.278×10^{-10}</td>
</tr>
<tr>
<td>40</td>
<td>8.881×10^{-16}</td>
<td>6.814×10^{-10}</td>
<td>6.813×10^{-9}</td>
<td>5.110×10^{-8}</td>
</tr>
<tr>
<td>60</td>
<td>9.992×10^{-16}</td>
<td>4.376×10^{-12}</td>
<td>7.179×10^{-11}</td>
<td>7.522×10^{-10}</td>
</tr>
<tr>
<td>80</td>
<td>8.881×10^{-16}</td>
<td>5.182×10^{-11}</td>
<td>5.152×10^{-10}</td>
<td>3.839×10^{-9}</td>
</tr>
<tr>
<td>100</td>
<td>7.771×10^{-16}</td>
<td>6.509×10^{-11}</td>
<td>6.531×10^{-10}</td>
<td>4.918×10^{-9}</td>
</tr>
</tbody>
</table>

Table: Absolute error of m_0, m_1, m_2, m_3 as a function of the number of samples.
Convergence of the moments

<table>
<thead>
<tr>
<th>Samples</th>
<th>$e_{abs,4,i}$</th>
<th>$e_{abs,5,i}$</th>
<th>$e_{abs,6,i}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>8.877×10^{-3}</td>
<td>7.542×10^{-2}</td>
<td>5.994×10^{-1}</td>
</tr>
<tr>
<td>5</td>
<td>6.990×10^{-6}</td>
<td>2.241×10^{-5}</td>
<td>4.571×10^{-5}</td>
</tr>
<tr>
<td>10</td>
<td>1.583×10^{-6}</td>
<td>1.007×10^{-5}</td>
<td>6.161×10^{-5}</td>
</tr>
<tr>
<td>20</td>
<td>9.895×10^{-9}</td>
<td>8.844×10^{-8}</td>
<td>6.855×10^{-7}</td>
</tr>
<tr>
<td>40</td>
<td>3.407×10^{-7}</td>
<td>2.130×10^{-6}</td>
<td>1.278×10^{-5}</td>
</tr>
<tr>
<td>60</td>
<td>6.465×10^{-9}</td>
<td>4.961×10^{-8}</td>
<td>3.539×10^{-7}</td>
</tr>
<tr>
<td>80</td>
<td>2.540×10^{-8}</td>
<td>1.574×10^{-7}</td>
<td>9.356×10^{-7}</td>
</tr>
<tr>
<td>100</td>
<td>3.295×10^{-8}</td>
<td>2.070×10^{-7}</td>
<td>1.250×10^{-6}</td>
</tr>
</tbody>
</table>

Table: Absolute error of m_4, m_5, m_6 as a function of the number of samples.
Convergence of the moments

<table>
<thead>
<tr>
<th>Samples</th>
<th>$e_{\text{abs},7,i}$</th>
<th>$e_{\text{abs},8,i}$</th>
<th>$e_{\text{abs},9,i}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>4.534×10^0</td>
<td>3.300×10^1</td>
<td>2.328×10^2</td>
</tr>
<tr>
<td>5</td>
<td>1.718×10^{-3}</td>
<td>2.107×10^{-2}</td>
<td>2.029×10^{-1}</td>
</tr>
<tr>
<td>10</td>
<td>3.667×10^{-4}</td>
<td>2.139×10^{-3}</td>
<td>1.230×10^{-2}</td>
</tr>
<tr>
<td>20</td>
<td>4.876×10^{-6}</td>
<td>3.271×10^{-5}</td>
<td>2.104×10^{-4}</td>
</tr>
<tr>
<td>40</td>
<td>7.463×10^{-5}</td>
<td>4.268×10^{-4}</td>
<td>2.402×10^{-3}</td>
</tr>
<tr>
<td>60</td>
<td>2.398×10^{-6}</td>
<td>1.565×10^{-5}</td>
<td>9.920×10^{-5}</td>
</tr>
<tr>
<td>80</td>
<td>5.399×10^{-6}</td>
<td>3.049×10^{-5}</td>
<td>1.692×10^{-4}</td>
</tr>
<tr>
<td>100</td>
<td>7.341×10^{-6}</td>
<td>4.226×10^{-5}</td>
<td>2.397×10^{-4}</td>
</tr>
</tbody>
</table>

Table: Absolute error of m_7, m_8, m_9 as a function of the number of samples.

Conclusions

- Mean and variance rapidly converge (less than 10 samples).
- Twenty samples provide the best trade-off in terms of moments convergence and efficiency for this case.
Low-order statistics

- Variance (Distance from the mean)

\[\sigma^2 = \frac{m_2}{m_0} - \mu^2, \]

- Skewness (Symmetry of the distribution)

\[\gamma_1 = \frac{\mu_3}{\sigma^3} = \frac{m_3/m_0 - 3\mu m_2/m_0 + 2\mu^3}{\sigma^3}, \]

- Kurtosis (Importance of tails)

\[\gamma_2 = \frac{\mu_4}{\sigma^4} = \frac{m_4/m_0 - 4\mu m_3/m_0 + 6\mu^2 m_2/m_0 - 3\mu^4}{\sigma^4}. \]

\(\mu_i \): central moments
\(m_i \): moments about the origin
Velocity mean

\[\mu(U_x) \]

\[\mu(U_y) \]
Velocity variance

\[\sigma^2(U_x) \]

\[\sigma^2(U_y) \]
Velocity skewness

\[\gamma_1(U_x) \]

\[\gamma_1(U_y) \]
Velocity kurtosis

\[\gamma_2(U_x) \]

\[\gamma_2(U_y) \]
The oblique shock problem

\[Ma = \frac{|U|}{a} = 3 \]
\[Ma \in [2.7, 3.3] \]
\[\tan \theta = 2 \cot \beta \frac{Ma_1^2 \sin^2 \beta - 1}{Ma_1^2 (\gamma + \cos(2\beta) + 2} \]

- Mesh: 640 x 320 cells
- Unsteady simulation (max CFL = 0.2)
- Compressible solver: rhoCentralFoam (OpenFOAM®)
Low-order statistics

$\mu(U_x)$

$\sigma^2(U_x)$

<table>
<thead>
<tr>
<th>Ma_1</th>
<th>$\beta_{Analytical}$</th>
<th>β_{UQ}</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.7</td>
<td>34.78</td>
<td>34.32</td>
</tr>
<tr>
<td>3.3</td>
<td>30.27</td>
<td>30.50</td>
</tr>
</tbody>
</table>

Table: Analytical and UQ prediction of the shock angle - 20 samples
Absolute error of the statistics - 20 samples

\[|\mu(U_x)_{20} - \mu(U_x)_{100}| \]

\[|\sigma^2(U_x)_{20} - \sigma^2(U_x)_{100}| \]
Outline

1. Introduction and background
2. Project objectives and milestones
3. Technical progress
 - Formulation of the quadrature-based UQ procedure
 - Example applications
4. Future work
Future work

- Reconstruction of the PDF of the system response (in progress)
- Validation of the quadrature-based UQ procedure on a set of simplified test-cases (in progress)
- Implementation of the procedure in suitable form to be used with MFIX
- Development of automation tools
- Applications to gas-particle flow in fluidized beds and risers
Personnel and publications

Personnel

- 1 Post-doc (Alberto Passalacqua) from October 2011
- 1 Ph.D. student (Xiaofei Hu) from June 2012

Publications

Thanks for your attention!

Questions?