

CFD Simulations of a Regenerative Process for Carbon Dioxide Capture in Advanced Gasification Based Power Plants

Emad Abbasi, Javad Abbasian and Hamid Arastoopour

Outline

Objective, Scope and Timeline

Completed Work and Results

Future Work

The Drive for Carbon Capture

CO₂ Removal and Hydrogen Production

Regenerable Sorbent Approach

MgO-CO₂ Equilibrium

Objective

The overall objective of this project is to develop a CFD model and to perform Computational Fluid Dynamic (CFD) simulations using Population Balance Equations (PBE) to describe the heterogeneous gas-solid absorption/regeneration and water-gas-shift (WGS) reactions in the context of multiphase CFD for a regenerative magnesium oxide-based (MgO-based) process for simultaneous removal of CO₂ and enhancement of H₂ production in coal gasification processes.

Scope of Work

The Project consists of the following four (4) tasks:

- <u>Task1</u>. Development of a CFD/PBE model accounting for the particle (sorbent) porosity distribution and of a numerical technique to solve the CFD/PBE model.
- <u>Task2</u>. Determination of the key parameters of the absorption and regeneration and WGS reactions.
- <u>Task3</u>. CFD simulations of the regenerative carbon dioxide removal process.
- Task4. Development of preliminary base case design for scale up

Project Schedule

Milestones:

- ▲ Task completion
- Experimental work completed
- + Reaction model finalized
- ★ CFD simulation of single reaction/reactor Completed
- CFD simulation of integrated process Completed
 - Development of the base-case design completed

Task 1 Development and validation of CFD model

Yi et al., International journal of greenhouse gas control, 2007.

Task 1 Numerical Modeling: Conservation Equations

2D, Eulerian-Eulerian Approach in combination with the kinetic theory of granular flow

Assumptions: Uniform and constant particle size and density

- Conservation of Mass
 - gas phase: $\frac{\partial}{\partial t} (\varepsilon_g \rho_g) + \nabla . (\varepsilon_g \rho_g v_g) = \overset{\bullet}{m_g}$
 - solid phase

$$\frac{\partial}{\partial t}(\varepsilon_s\rho_s) + \nabla .(\varepsilon_s\rho_s v_s) = \dot{m}_s$$

- Conservation of Momentum

- gas phase:

$$\frac{\partial}{\partial t} (\varepsilon_{g} \rho_{g} v_{g}) + \nabla . (\varepsilon_{g} \rho_{g} v_{g} v_{g}) = -\varepsilon_{g} \nabla P + \nabla . \tau_{g} + \varepsilon_{g} \rho_{g} g - \beta_{gs} (v_{g} - v_{s})$$
- solid phase

$$\frac{\partial}{\partial t} (\varepsilon_{s} \rho_{s} v_{s}) + \nabla . (\varepsilon_{s} \rho_{s} v_{s} v_{s}) = -\varepsilon_{s} \nabla P - \nabla P_{s} + \nabla . \tau_{s} + \varepsilon_{s} \rho_{s} g + \beta_{gs} (v_{g} - v_{s})$$

Task 1 Numerical Modeling: Conservation Equations

- gas phase:

$$\frac{\partial}{\partial t} (\varepsilon_g \rho_g y_i) + \nabla (\varepsilon_g \rho_g v_g y_i) = R_j$$

- solid phase

$$\frac{\partial}{\partial t}(\varepsilon_s \rho_s y_i) + \nabla (\varepsilon_s \rho_s v_s y_i) = R_j$$

- Conservation of solid phase fluctuating Energy

- solid phase

$$\frac{3}{2} \left[\frac{\partial}{\partial t} (\varepsilon_s \rho_s \theta) + \nabla . (\varepsilon_s \rho_s \theta) v_s \right] = (-\nabla p_s I + \tau_s) : \nabla v_s + \nabla . (\kappa_s \nabla \theta) - \gamma_s$$

Generation of Diffusion dissipation

Generation of energy due to solid stress tensor

- Reaction Kinetic: Deactivation Kinetic Model (Park et al, 2007)

$$-\frac{da}{dt} = k_d C_{CO_2} a$$
$$a = \exp\left[\frac{\left[1 - \exp(\tau \cdot k_s (1 - \exp(-k_d t)))\right]}{1 - \exp(-k_d t)}\exp(-k_d t)\right]$$

Task 1 Numerical Modeling: Drag Correlation

Gas-solid inter-phase exchange coefficient: EMMS model (Wang et al. 2004)

Accounts for cluster formation by multiplying the "Wen & Yu" drag correlation with a heterogeneity factor

Task 1 Solid Volume Fraction inside the riser

Task 1 Results

Pressure Drop

sensitivity to the Inlet Gas Velocity

DP4	70	73	1	1.5 2 2.5 3 3.4 Inlet Gas Velocity (m/s)
DP3	250	270	10 +	
DP2	200-500	335	20 -	Simulation-Diactivation model
DP1	100	107	0 00 0 00	Experiment
		Cintaidae	а 2 30-3 30-	
	Experiments	Simulation		
	KIER	drop (mm H2O)	<u>8</u> 50 -	
	(mm H2O)	Pressure	℅ 60 -	condition
	Time averaged	Time	70 -	Baseline

Task 1 Results

Yi et al., International journal of greenhouse gas control, 2007.

Task 1 Formulation of a Population Balance Model (PBM)

What is the Population Balance Equation?

> The population balance equation is a balance equation based on the number density function $f(\xi; x, t)$

Accounts for the particles accumulating, leaving, entering or being generated or destroyed in a single control volume

$$\frac{\partial f(\boldsymbol{\xi}; \mathbf{x}, t)}{\partial t} + \frac{\partial}{\partial x_i} [u_p(t, \mathbf{x}) f(\boldsymbol{\xi}; \mathbf{x}, t)] + \frac{\partial}{\partial x_i} [D_{pt}(\boldsymbol{\xi}; \mathbf{x}, t) \frac{\partial f(\boldsymbol{\xi}; \mathbf{x}, t)}{\partial x_i}] + \frac{\partial}{\partial \boldsymbol{\xi}_j} [\frac{\partial \boldsymbol{\xi}_j}{\partial t} f(\boldsymbol{\xi}; \mathbf{x}, t)] = h(\boldsymbol{\xi}; \mathbf{x}, t)$$
Accumulation term + Convection term + Growth term = Source term

Task 1 FCMOM

Finite size domain Complete set of trial functions Method Of Moments: FCMOM

Finite size domain: [-1, 1] instead of [0,∞]

$$\overline{\xi} = \frac{\{\xi - [\xi_{\min}(t) + \xi_{\max}(t)]/2\}}{[\xi_{\min}(t) + \xi_{\max}(t)]/2}$$

Solution in terms of both Moments and size distribution

> $f(\xi, x, t)$ will be approximated by expansion based on a complete set of trial functions

$$f(\xi, x, t) = \sum_{n=0}^{\infty} C_n(t, x) \cdot \Phi_n(\xi) \quad \text{when}$$

$$c_n = \sqrt{\frac{2n+1}{2}} \cdot \frac{1}{2^n} \cdot \sum_{\nu=0}^n (-1)^{n-\nu} \cdot \frac{(2\nu)!}{[(2\nu-n)!]} \cdot \{\frac{1}{[(n-\nu)!] \cdot [(\nu)!]}\} \cdot \mu_{2\nu-n}$$

$$\mu_i = \int_{-1}^1 \overline{f'} \cdot (\overline{\xi})^i \cdot d\overline{\xi} \quad \phi_n(\overline{\xi}) = \sqrt{\frac{2n+1}{2}} \cdot P_n(\overline{\xi})$$

Task 1 Moments Transport Equation

$$\frac{\partial \mu_i}{\partial t} + \nabla .(\mu_i . v_p) - \nabla .(D'_{pt} \nabla \mu_i) = -(MB + MB_{Conv} + MB_{Diff1} + MB_{Diff2} + MB_{Diff3} + IG)$$

MB : Terms due to coordinate transformation (Moving Boundary)

IG: Contribution due to the Integration of Growth Term

Boundary conditions:

$$\frac{d\overline{\xi}_{\min}}{dt} = S_{\min}$$
 and $\frac{d\overline{\xi}_{\max}}{dt} = S_{\max}$

For the application of interest:

$$\frac{\partial \mu_i}{\partial t} + \nabla .(\mu_i . v_p) = -(MB + MB_{Conv} + IG)$$

Task 1 Assumptions

- Uniform and constant particle size distribution.
- Density of the particles is changing during the process due to the reaction between the solid and the gas phase.
- Density distribution function is defined in the range of $[\xi_{min}, \xi_{max}]$ and then using a coordinate transform is changed to [-1, +1].
- Incompressible particle phase .
- Constant maximum sorbent density, corresponding to the completely reacted sorbent.
- Variable minimum sorbent density, corresponding to the fresh sorbent.
 The rate of change is related to the rate of reaction.
- no breakage or agglomeration in density domain.

Task 1 Implementation and validation of FCMOM method in a CFD code

Implementation in Ansys Fluent via UDS

$$\frac{\partial \varepsilon_s \rho_s \phi_s^i}{\partial t} + \nabla (\varepsilon_s \rho_s v_p \phi_s^i - \varepsilon_s D_s^i \nabla \phi_s^i) = S_{\phi s}^i$$

$$\phi_s^i = \frac{\mu_i}{\varepsilon_s}$$

$$\frac{\partial \mu_i}{\partial t} + \nabla . (\mu_i . v_p) = -(MB + MB_{Conv} + IG)$$

Task 1 Validation

Test case1: Linear Growth, No convection

Task 1 Coupling CFD-PBE

 $f_2 f$

 f_1

 $v_g = v_s = 1 \text{ m/s}$

 $\epsilon_s = 0.2$

1m

Task 1 Test case 2: Density Growth (Reaction) and convection

Assumption: Moments are convected with mixture velocity

$$\frac{\partial \mu_{i}}{\partial t} + \frac{\partial}{\partial x_{j}} [v_{p,j}\mu_{i}] = -\{[\overline{f'_{+1}} - (-1)^{i}.\overline{f'_{-1}}] - i.\mu_{i-1}\} \cdot \frac{1}{(\xi_{\max} - \xi_{\min})} \cdot (\frac{d\xi_{\min}}{dt}) - \{[\overline{f'_{+1}} - (-1)^{i+1}.\overline{f'_{-1}}] - (i+1).\mu_{i}\} \cdot \frac{1}{(\xi_{\max} - \xi_{\min})} \cdot (-\frac{d\xi_{\min}}{dt}) - \{[\overline{f'_{+1}} - (-1)^{i}.\overline{f'_{-1}}] - i.\mu_{i-1}\} \cdot \frac{v_{p,j}}{(\xi_{\max} - \xi_{\min})} \cdot (\frac{\partial \xi_{\min}}{\partial x_{j}}) - \{[\overline{f'_{+1}} - (-1)^{i+1}.\overline{f'_{-1}}] - (i+1).\mu_{i}\} \cdot \frac{v_{p,j}}{(\xi_{\max} - \xi_{\min})} \cdot (-\frac{\partial \xi_{\min}}{\partial x_{j}}) - \{[\overline{f'_{+1}} - (-1)^{i+1}.\overline{f'_{-1}}] - (i+1).\mu_{i}\} \cdot \frac{v_{p,j}}{(\xi_{\max} - \xi_{\min})} \cdot (-\frac{\partial \xi_{\min}}{\partial x_{j}}) - \{[\overline{f'_{+1}} - (-1)^{i+1}.\overline{f'_{-1}}] - (i+1).\mu_{i}\} \cdot \frac{v_{p,j}}{(\xi_{\max} - \xi_{\min})} \cdot (-\frac{\partial \xi_{\min}}{\partial x_{j}}) - \{[\overline{f'_{+1}} - (-1)^{i+1}.\overline{f'_{-1}}] - (i+1).\mu_{i}\} \cdot \frac{v_{p,j}}{(\xi_{\max} - \xi_{\min})} \cdot (-\frac{\partial \xi_{\min}}{\partial x_{j}}) - \{[\overline{f'_{+1}} - (-1)^{i+1}.\overline{f'_{-1}}] - (i+1).\mu_{i}\} \cdot \frac{v_{p,j}}{(\xi_{\max} - \xi_{\min})} \cdot (-\frac{\partial \xi_{\min}}{\partial x_{j}}) - \{[\overline{f'_{+1}} - (-1)^{i+1}.\overline{f'_{-1}}] - (i+1).\mu_{i}\} \cdot \frac{v_{p,j}}{(\xi_{\max} - \xi_{\min})} \cdot (-\frac{\partial \xi_{\min}}{\partial x_{j}}) - \{[\overline{f'_{+1}} - (-1)^{i+1}.\overline{f'_{-1}}] - (i+1).\mu_{i}\} \cdot \frac{v_{p,j}}{(\xi_{\max} - \xi_{\min})} \cdot (-\frac{\partial \xi_{\min}}{\partial x_{j}}) - \{[\overline{f'_{+1}} - (-1)^{i+1}.\overline{f'_{-1}}] - (i+1).\mu_{i}\} \cdot \frac{v_{p,j}}{(\xi_{\max} - \xi_{\min})} \cdot (-\frac{\partial \xi_{\min}}{\partial x_{j}}) - \{[\overline{f'_{+1}} - (-1)^{i+1}.\overline{f'_{+1}}] - (-1)^{i+1}.\overline{f'_{+1}}} - (-1)^{i+1}.\overline{f'_{+1}}] - (-1)^{i+1}.\overline{f'_{+1}}} - (-1)^{i+1}.\overline{f'_{+1}}] - (-1)^{i+1}.\overline{f'_{+1}}} - (-1)^{i+1}.\overline{f'_{+1}} - (-1)^{i+1}.\overline{f'_{+1}}} - (-1)^{i+1}.\overline{f'_{+1}} - (-1)^{i+1}.\overline{f'_{+1}}] - (-1)^{i+1}.\overline{f'_{+1}}} - (-1)^{i+1}.\overline{f'_{+1}}} - (-1)^{i+1}.\overline{f'_{+1}}} - (-1)^{i+1}.\overline{f'_{+1}} - (-1)^{i+1}.\overline{f'_{+1}} - (-1)^{i+1}.\overline{f'_{+1}}} - (-1)^{i+1}.\overline{f'_{+1}}} - (-1)^{i+1}.\overline{f'_{+1}} - (-1)^{i+1}.\overline{f'_{+1}}} - (-1)^{i+1}.\overline{f'_{+1}}} - (-1)^{i+1}.\overline{f'_{+1}}} - (-1)^{i+1}.\overline{f'_{+1}}} - (-1)^{i+1}.\overline{f'_{+1}} - (-1)^{i+1}.\overline{f'_{+1}} - (-1)^{i+1}.\overline{f'_{+1}} - (-1)^{i+1}.\overline{f'_{+1}}} - (-1)^{i+1}.\overline{f'_{+1}} - (-1)^{i+1}.\overline{f'_{+1}} - (-1)^{i+1}.\overline{f'_{+1}} - (-1)^{i+1}.\overline{f'_{+1}} - (-1)^{i+1}.\overline{f'_{+1}} - (-1)^{i+1}.\overline{f'_{+1}} - (-1)^{i+1}.\overline{f'_{$$

$$\frac{\partial \xi_{\min}}{\partial t} + v_p \cdot \nabla \xi_{\min} = K$$

$$\rho_{s} = \frac{(\frac{\mu_{1}}{\mu_{0}})(\xi_{\max} - \xi_{\min}) + (\xi_{\min} + \xi_{\max})}{2}$$

Test case 2: Results

Test case 2: Results

Task 2 Development of a chemical reaction kinetics model

- 1- There are two distinct reactive zones inside the particles
- 2- Process is controlled by both surface reaction and product layer diffusion
- **3-There is an Expanding product layer** $r_p = r'_p \sqrt[3]{(1-X) + ZX}$
- **4-** D_g is Variable due to the pore closing and is a function of conversion $D_g = D_{g0}(-\alpha X^{\beta})$

5- Intrinsic reaction rate is Arrhenius type $k_s = k_{s0} \exp(-\frac{E}{RT})$

Task 2 Two-Zone Variable Diffusivity Shrinking Core Model with Expanding product layer

r_c: Radius of the low reactive zone (k₂)
 r_p: Initial radius of the particles
 r_p': Radius of the expanded particle

Gas Film Product Layer Highly Reactive Zone (k₁) Low Reactive Zone (k₂)

Task 2 Two-Zone Variable Diffusivity Shrinking Core Model with Expanding product layer

 $D_g = D_{g0}(-\alpha X^{\beta})$

$$r_p = r'_p \sqrt[3]{(1-X) + ZX}$$

$$Z = \frac{\rho_{product} \cdot M_{react}}{\rho_{react} \cdot M_{product}}$$

$$\frac{dX}{dt} = -\frac{\frac{3}{r_p} \frac{k_s}{N_{MgO}^o} (C_b - C_e) (1 - X)^{\frac{2}{3}}}{1 + \frac{k_s}{D_g} r_p (1 - X)^{\frac{1}{3}} (1 - \sqrt[3]{\frac{1 - X}{1 - X + XZ}})}$$
$$k_s = \begin{vmatrix} k_1 & \text{for } r \ge r_c \\ k_2 & \text{for } r < r_c \end{vmatrix}$$

Task 2 Reaction Model vs TGA Experimental Date

Task 2 Validity of Shrinking Core Model

Thiele Modulus

$$\Phi = \sqrt{\frac{Ka^2}{D}} \quad \frac{reaction}{diffusion}$$

$$\Phi \approx 0.01 \quad Reaction is controlling
$$\Phi \approx 100 \quad Diffusion is controlling$$$$

Shrinking core model is applicable in an intermediate regime

Thiele Modulus in our study

Onischak and Gidaspow, "Separation of Gaseous Mixtures by Regenerative sorption on Porous Solids. Part II: Regenerative separation of CO₂", Recent Developments in Separation Science, ed. N. Li, 1972

Packed-Bed Model

Packed-Bed modeling results

Conclusion

- Results of the CFD model in terms of pressure drops, capturing the cluster formation and CO₂ removal rate is in a good agreement with the experimental data
- An explicit Reaction kinetics model has been developed which is able to explain TGA experimental data very well and is suitable for CFD applications
- PBM and the coupling algorithm for implementation in the CFD code has been developed and verified. More verification is in progress.

Future Work

Simulations

- Validation/Verification of the coupled CFD-PBM.
- Validation of reaction model vs Packed-bed experiments
- Application of the CFD-PBM in simulation of the circulating fluidized bed reactor

Experiments

- Sorbent improvement
- Reaction rate measurement in shallow/disperse bed reactor

Acknowledgement

Thanks to the Department of Energy (DOE-NETL) and ICCI for financial support.

Thanks for your attention

Solid inlet	Gas inlet	Outlet	Wall
Solid mass flux = 21 kg/m ² s	Gas velocity= 2 m/s		No slip condition for gas phase
Solid volume fraction = 0.6		P = 1 atm	
Carrier gas mass flux = 0.05 kg/m²s	Solid volume fraction= 0		Partial slip condition for solid phase
Mass fraction $K_2CO_3 = 0.35$ Mass fraction $KHCO_3 = 0$	Mass fraction $CO_2 = 0.1$ Mass fraction $H_2O = 0.15$		
Mass fraction Inert = 0.65	Mass fraction $N_2 = 0.75$		

A second order discretization scheme was used to discretize the governing equation domain including 34x1200 uniform rectangular cells.