An Experimental and Chemical Kinetics Study of the Combustion of Syngas and High Hydrogen Content Fuels Grant # DE-NT0000752

> Robert J. Santoro The Pennsylvania State University & Fred Dryer and Yiguang Ju Princeton University

U.S. Department of Energy National Energy Technology Laboratory 2012 University Turbine Systems Research Workshop October 2 – 4, 2012 High-Pressure High-Temperature Flow Reactor Studies Experimental Apparatus for Measuring Ignition Delay

- Shock Tubes
- Flow Reactors
 - Most like a premixer in a gas turbine
- Rapid Compression Machines
- Constant volume bombs
- Literature

Petersen 2007 "New syngas/air ignition data at lower temperature and elevated pressure and comparison to current kinetics models"

Current Experimental Apparatus

- Flow reactor
- Preburner
- Instrumentation
- Injector
 - Radial
 - Axial

Controlled Variables

- Residence time
 - nozzle
- Composition
 - Fuel flow rate and air flow rate
- Pressure
 - Total mass flow rate
- Temperature
 - Air heater
 - preburner

Flow Reactor Test Section

Inner Diameter: 1.779 in Cold Test Section Length: 84.3 in Reynolds Number: ~100,000 Total mass flow rate: ~0.2 lbm/s

Flow Reactor Design

- Instrumented test section before nozzle
- Sonic nozzle and water quenching to isolate test section from afterburner
- Injector design
 - Venturi design for rapid mixing with minimal recirculation zones
 - 7 venturis with 3 fuel injection holes just upstream of throat
- Re# (Max) = 5×10⁵ to 3×10⁶

Thermocouple Array

Array of thermocouples located 0.2 inches from the wall that provides for detection of the autoignition event in the flow reactor tube

Detection of an Ignition Event

Tube Length, L

Detection of an Ignition Event

τ = L_i /v for these events where I = 1,2, and 3 **Multiple Detectors** (TC,PD)

Tube Length, L

Study of H₂-O₂ Autoignition by Beerer and McDonnel

	Pressure	Equivalence	Ignition	Residence	Flow
	(atm)	ratio	Temperature	Time, τ	Velocity,v
			(К)	(ms)	(m/s)
1	6.4	0.31	778	451	8.4
2	5.8	0.37	780	178	21.3

 $\tau_1/\tau_2 = 2.53$ $v_2/v_1 = 2.54$

D. J. Beerer & V. G. McDonell J. of Engr. Gas Turbine and Power (2008)

Iso-Octane Autoignition Study Dr. Michelle Christensen 2012

Figure 4-2. Iso-octane autoignition results from shock tubes [51], rapid compression machines [21, 66, 73, 74], and the current flow reactor studies. All data points are from 14-16 atm and have been normalized to 15 atm

Iso-Octane Autoignition Study Dr. Michelle Christensen 2012

Figure 4-6. Experimental results and model predictions for the threshold equivalence as a function of temperature at 20 atm. Symbols represent experimental results from the current study while lines represent model results using the LLNL mechanism [32].

Description of Injectors

Axial Injector

Radial Injector

Experimental Method

- Set initial conditions required
 - Pressure, temperature, residence time, equivalence ratio
- Inject fuel using a high speed valve system
- Determine if ignition occurred or did not occur
- Incrementally increase temperature until ignition occurs

No Ignition

Identifying ignition location

Location is identified by high speed temperature measurements

10/4/2012

Calculating ignition delay

 L is distance to location of ignition (thermocouple location) from the injection point

$$\tau_{residence} = \frac{L}{V}$$

$$\rho_{mixture} = \frac{R_{mixture}T}{P}$$

$$V = \frac{\dot{m}_{total}}{\rho_{mixture}A}$$

Mixture Temperature

 Calculated by performing energy balance on preburner and air streams

Results

Interpreting Data

- Use the highest temperature no-ignition experiment for mixture temperature.
 - Can measure fuel and air temperatures reliably
- Use only ignition experiments that occur between thermocouple T9 and T13 when comparing results.
 - Need ignitions that occur near the end of the flow reactor (residence time)

10/4/2012

31

Primary Eight Conditions

Syngas Results

Axial Comparison to Radial Injectors

Additional Comments

Interpreting Experimental Ignition Delay Observations

- Chemical induction is very important for ignition delay time in the H₂-O₂ system at temperatures below 1000K and is very sensitive to chemical perturbations from any source, e.g., pre-ignition pressure increases (left).
- Use of constant U,V constraint to calculate predictions to test models leads of erroneous results andThe volume as a function of time (VTIM) constraint is the proper one to use.

Conclusions

- These results agree with the homogeneous onedimensional simulations within a factor of 5.
- Model comparisons were better for the lower equivalence ratio, 0.375, studied than the higher equivalence ratio, 0.750, case.
- The expected trends between results were consistent with expected pressure and equivalence ratio behavior.
- Measurements made using the axial injector indicated that autoignition does not occur below 800 K for the residence time studied. This result is in disagreement with previous work with respect to homogenous chemical kinetic models predictions.

Acknowledgments

I wish to acknowledge:

Mr. Dan Elies, Dr. Sibtosh Pal, Dr. Roger Woodward, Mr. Larry Schaaf for their many contributions to this work.

- Dr. Vince McDonnel for his sharing experience that provided key insights that led to this work.
- DOE and our Contract Monitor Mark Freeman for their support and patience.

Questions?