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High-Pressure High-
TemperatureTemperature

Flow Reactor Studies



Experimental Apparatus for 
M i I i i D lMeasuring Ignition Delay

• Shock TubesShock Tubes
• Flow Reactors

M t lik i i t bi– Most like a premixer in a gas turbine
• Rapid Compression Machines
• Constant volume bombs

• Literature
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Corrected normalize
or  P=20 atm

Petersen 2007 “New syngas/air ignition data at lower 
temperature and elevated pressure and comparison 
to current kinetics models”10/4/2012 4



Current Experimental ApparatusCurrent Experimental Apparatus

• Flow reactorFlow reactor
• Preburner

I t t ti• Instrumentation
• Injector

– Radial
– Axial
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Controlled VariablesControlled Variables
• Residence timeResidence time

– nozzle
• Compositionp

– Fuel flow rate and air flow rate
• Pressure

– Total mass flow rate
• Temperature

– Air heater
– preburner
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Flow Reactor Test SectionFlow Reactor Test Section

Inner Diameter: 1.779 in
Cold Test Section Length: 84.3 in
R ld N b 100 000Reynolds Number: ~100,000
Total mass flow rate: ~0.2 lbm/s10/4/2012 8



Flow Reactor Design
• Instrumented test section before nozzle
• Sonic nozzle and water quenching to isolate test section from 

afterburner
Injector design• Injector design

– Venturi design for rapid mixing with minimal recirculation zones
– 7 venturis with 3 fuel injection holes just upstream of throat

R # (M ) 5 105 t 3 106• Re# (Max) = 5105 to 3106



Thermocouple Array
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Array of thermocouples located 0.2 inches from the wall that 
provides for detection of the autoignition event in the flow reactor 
tube



Detection of an Ignition EventDetection of an Ignition Event

Detector (TC,PD)
L/ f ll th tτ = L/v for all these events

Velocity, 
v

Tube Length, L



Detection of an Ignition EventDetection of an Ignition Event

τ = Li /v for these events where I = 1,2, and 3

Multiple Detectors (TC,PD)
i , ,

Velocity, 
v

Tube Length, L



A i l L ti N i li dV l it
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Study of H2-O2 Autoignition
by Beerer and McDonnelby Beerer and McDonnel

 

  Pressure 
(atm) 

Equivalence 
ratio

Ignition 
Temperature 

Residence 
Time, τ

Flow 
Velocity,v

(K) (ms)  (m/s) 
1  6.4  0.31 778 451 8.4
2 5 8 0 37 780 178 21 32  5.8  0.37 780 178 21.3
 

τ1/τ2 = 2.53 v2/v1 = 2.54

D. J. Beerer & V. G. McDonell J. of Engr. Gas Turbine and Power 
(2008)



Iso-0ctane Autoignition Study
D Mi h ll Ch i t 2012Dr. Michelle Christensen 2012
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Iso-0ctane Autoignition Study
D Mi h ll Ch i 2012Dr. Michelle Christensen 2012
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D i ti f I j tDescription of Injectors
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Axial InjectorAxial Injector
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Radial InjectorRadial Injector
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Experimental MethodExperimental Method

• Set initial conditions requiredSet initial conditions required
– Pressure, temperature, residence time, 

equivalence ratioequivalence ratio
• Inject fuel using a high speed valve 

systemsystem
• Determine if ignition occurred or did not 

occur
• Incrementally increase temperature until 

ignition occurs
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No IgnitionNo Ignition
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Ignition
10/4/2012 23



Identifying ignition locationIdentifying ignition location
• Location is identified by high speed 

t t ttemperature measurements
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Calculating ignition delayCalculating ignition delay

• L is distance to location of ignitionL is distance to location of ignition 
(thermocouple location) from the injection 
pointpoint
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Mixture TemperatureMixture Temperature

• Calculated by performing energy balanceCalculated by performing energy balance 
on preburner and air streams
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ResultsResults
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Interpreting DataInterpreting Data

• Use the highest temperature no-ignitionUse the highest temperature no ignition 
experiment for mixture temperature.

Can measure fuel and air temperatures– Can measure fuel and air temperatures 
reliably

• Use only ignition experiments that occur• Use only ignition experiments that occur 
between thermocouple T9 and T13 when 
comparing resultscomparing results.
– Need ignitions that occur near the end of the 

flow reactor (residence time)flow reactor (residence time)
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Primary Eight Conditions
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Syngas ResultsSyngas Results
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Axial Comparison to Radial Injectors



Additional Comments
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Interpreting Experimental Ignition Delay Observations
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• Chemical induction is very important for ignition delay time in the H2-O2
system at temperatures below 1000K  and is very sensitive to chemical 
perturbations from any source, e.g., pre-ignition pressure increases 
(left).

• Use of constant U,V constraint to calculate predictions to test models 
l d f lt dTh l f ti f ti (VTIM)leads of erroneous results andThe volume as a function of time (VTIM) 
constraint is the proper one to use. 



Conclusions
• These results agree with the homogeneous one-

dimensional simulations within a factor of 5. 
• Model comparisons were better for the lower 

equivalence ratio, 0.375, studied than the higher 
equivalence ratio 0 750 caseequivalence ratio, 0.750, case.

• The expected trends between results were consistent 
with expected pressure and equivalence ratio 
behavior.

• Measurements made using the axial injector indicated 
that autoignition does not occur below 800 K for thethat autoignition does not occur below 800 K for the 
residence time studied. This result is in disagreement 
with previous work with respect to homogenous 
chemical kinetic models predictions. 
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Questions?Questions?

10/4/2012 40


