Tunable Diode Laser Sensors for Monitoring Combustion and Gasification Systems

Jay B. Jeffries*, Ronald K. Hanson*, and Kevin Whitty**

*High Temperature Gasdynamics Laboratory, Stanford University **Institute for Clean and Secure Energy, The University of Utah DoE/EPRI Workshop on Instrumentation June 2012

- 1. Fundamentals of TDL absorption sensing
- 2. TDL sensing for coal gasification
 - T and H₂O sensing*
 - CO, CO₂, CH₄, H₂O sensing**
- 3. Monitor of syngas heating value

*Sponsored by EPRI (Jose Marasigan & Jeff Phillips) **Sponsored by DoE NETL (Susan Maley)

My main message today is that:

TDL Absorption is Practical in Harsh Environments

- Utilizes economical, robust and portable TDL light sources and fiber optics
- Can yield multiple properties: species, T, P, V, & m in real-time over wide conditions
 - T to 8000K, P to 50 atm, V to 15km/sec, multiphase flows, overcoming strong emission, scattering, vibration, and electrical interference
- Demonstrated in harsh environments and large-scale systems:
 - Aero-engine inlets, scramjets, pulse detonation engines, IC engines, gas turbines arcjets, shock tunnels, coal-fired combustors, rocket motors, furnaces....
- Potential use in control of practical energy systems

Coal-fired Utility Boiler

Chao, Proc Comb Inst, 2011

IC-Engines @ Nissan

Jeffries, SAE J. Eng, 2010

Coal Gasifier @ U of Utah

Jeffries, Pittsburgh Coal Conf, 2011

Absorption Fundamentals: Species

Absorption of monochromatic light

- Scanned-wavelength line-of-sight direct absorption
 - **Beer-Lambert relation** $\mathcal{T}_{V} \equiv \frac{I_{t}}{I_{o}} = \exp(-k_{V} \cdot L) = \exp(-n_{i} \cdot \sigma_{V} \cdot L)$
 - Spectral absorption coefficient $k_{\nu} = S(T) \cdot \Phi(T, P, \chi_i) \cdot \chi_i \cdot P$

absorbance

Absorption Fundamentals: Velocity

• Shifts & shape of Φ contain information (T,V,P, χ_i)

• T from ratio of absorption at two wavelengths

Absorption Fundamentals: Multiplexed

- Wavelength multiplexing is often utilized
 - To monitor multiple parameters or species
 - To assess non-uniformity along line-of-sight

TDL Sensors Provide Access to a Wide Range of Combustion Species/Applications

Small species such as NO, CO, CO₂, and H_2O have discrete rotational transitions in the vibrational bands

Larger molecules, e.g., hydrocarbon fuels, have blended features

Two primary TDLAS sensor strategies

Two Absorption Measurement Techniques: Direct Absorption (DA) & Wavelength Modulation Spectroscopy (WMS)

- Direct absorption: Method of choice when applicable
- WMS: More sensitive especially for small signals (near zero baseline)
 - WMS with TDLs improves noise rejection
 - If-Normalized WMS-2f/1f: Provides I_o without a baseline

High P,T Sensing Enabled by WMS

High P, T challenges

- Broad and blended spectra at high P
- Decreased absorbance at high T

***** Solution

- * 1f-Normalized WMS-2f
 - Recovers strong peaks
 - No baseline I_o needed!
 - Also suppresses noise and transmission losses

WMS-2f/1f Accounts for Non-Absorption Losses

Demonstrate normalized WMS-2f/1f in laboratory air

- 2f/1f unchanged when beam attenuated (e.g., scattering losses)
- 2f/1f unchanged when optical alignment is spoiled by vibration

WMS-2f/1f signals free of window fouling or particulate scattering WMS has other advantages too

Sensing with Large Transmission Losses from Scattering Enabled by WMS

Transmission of laser light at non-absorption wavelengths

Measurement in syngas product line before particulate filtering

- Particulate loading increases with pressure (99.9% loss at 150psig)
- Varies with gasifier performance, fuel, temperature, etc.

Solution: Stanford's 1f-normalized WMS-2f scheme

What might we measure in syngas?

Vision and Goals for TDL Sensing in IGCC

Vision: Sensor for control signals to optimize gasifier output and gas turbine input

- **<u>Goals:</u>** Two flow parameters considered: gas temperature and heating value
 - Gas temperature determined by ratio of H₂O measurements
 - Measurements of CO, CH₄, CO₂, and H₂O provide heating value
 - H₂ determined by gas balance as other species ignored
 - Four measurement stations considered: spanning reactor core to products

Oxygen-blown, Down-fired, Entrained-flow Coal Gasification Facility at the University of Utah

Pilot scale gasifier

- Rated to 450 psig
 - current data to 200 psig
- Rated to 3100 °F
- Coal throughput: 1 ton/day
- Overall dimensions
 5.1 m (17') tall
 0.76 m (30") OD
- Reactor dimensions
 1.5 m (60") long
 0.20 m (8") ID

- Four measurement campaigns to test Stanford TDL sensors:
 - Aug. 2010, Dec. 2010, Aug. 2011, May 2012
- Ideal facility for instrumentation testing:
 - Rapid transition from 1 atm flame to 20 atm gasification conditions
 - Reactor kept hot with 1 atm natural gas flame between runs

Sensor Setup in Utah Gasifier: T and H₂O

Two reactor locations tested

- Position 1: Reactor core
- Position 2: Quench location

Sensor Setup in Utah Gasifier: T and H₂O

Two reactor locations tested

- Position 1: Reactor core
 - Highest T
 - Largest scattering losses
 - Emission interference
 - Time limited by slag flow
 - Successful measurements demonstrated

- Transmission at 50 psig 0.13% dropping to 0.02% at 150 psig
 - Normalization scheme successful
 - Very strong optical emission optical filtering scheme successful
- Optical access tube successfully stayed open in presence of flowing slag'
 - Later unsuccessful with different coal (and different atomizer)

Temperature in Reactor Core

- Normalization scheme successful with low transmission (< 0.02%)
- TDL sensor time response can capture flow changes

Sensor Setup in Utah Gasifier: T and H₂O

Two reactor locations tested

- Position 2: Quench location
 - Modest purge flow keeps windows clean
 - Lower T different line pair
 - Amplifier available
 - Increase power x10
 - Successful measurements even with 10⁻⁵ attenuation

Temperature @ Quench Location

- Normalized WMS accounts for varying transmission (10⁻³ at 160 psig)
- Measured T at reactor pressures of 90, 120 and 160 psig stable
- Measured T at 200 psig identifies potential fuel/O₂ input instabilities

Temperature @ Quench Location

- Different gasifier conditions, different coal, more particulate scattering
- High SNR, time-resolved measurements of T using fiber amplifier
 - Less than 10⁻⁵ of the laser light transmitted

Sensor Setup in Utah Gasifier: Syngas Composition

- CO, CO₂, and CH₄ lasers use lasers 2-2.3 μm
 - Fiber technology less available
 - TDLs controlled remotely but located near measurement

Sensor Setup in Utah Gasifier: Syngas Composition

- Syngas can by-pass sensor location for window maintenance
- Similar setup before and after particulate filter (similar results)
- Multiple-lasers directed through one window
 - Rapid (10 Hz) switching from one species to another
 - Time-resolution ~1/3 second

TDL Sensor Measured Syngas Composition

- Laser absorption measurements of CO, CO₂, H₂O and CH₄ over 1 hour
- CH₄ added to syngas to test sensor response and vary gas composition
- Gasifier feed rates changed to test sensor response

Syngas Composition Including N_2 and H_2

- N₂ in flow from gas purges determined by metering and GC data
- Assume the rest of the syngas is H₂
 - Enables determination of lower heating value (LHV)

Time-Resolved Monitor of Syngas LHV

- One hour time record of syngas lower heating value (LHV)
 - CO, CO₂, CH₄ and H₂O from TDL sensor and N₂ from facility data
- Assume balance of syngas H₂
 - LHV contribution of small concentrations of H₂S and NH₃
 - are estimated to be less than 2% (accounted as H_2)

Summary

- A novel modulation strategy enables measurements in high pressure environments with extinction by scattering
 - Scheme validated for extinction as large as 10⁵
- Sensor demonstration measurements made in four locations of a pilot-scale, entrained-flow, coal gasifier
 - Time-resolved measurements capture small changes in gasifier operating conditions
- Current work focused on sensor validation and demonstration

Next Steps:

- Transition sensor to real-time for continuous unattended monitoring
- Add H₂S and NH₃ to sensor suite
- Package next-generation sensor for industrial-scale applications (test Utah?)
- Find suitable industrial-scale demonstration opportunities

Acknowledgements: Stanford PhD students Kai Sun and Rito Sur

Professor Kevin Whitty at University of Utah

Susan Maley @DoE; Jeff Phillips and Jose Marasigan @EPRI

