Distributed Sensor Coordination for Advanced Energy Systems

PI: Kagan Tumer Oregon State University kagan.tumer@oregonstate.edu

Morgantown, WV 3/13/2012

Agreement Number: DE-FE0000857 NETL Project Manager: Steve Seachman

Motivation

• Where are we?

-

- Advanced energy systems are becoming more interconnected
 o More complex, more distributed, more stochastic
 - Computation pushed further down the pipe
 - More powerful, cheaper, smaller devices
- Where are we going?
 - Smart "sensor" networks
 - o Tens of thousands of tiny, simple, unreliable sensors
 - Intelligent system health management
 - o Sense, decide, act -- repeat 1000s of times

Motivation

- Efficient operation in dynamic and stochastic environments

How to coordinate a very large number of sensors and actuators so that they collectively optimize a system level objective function ?

- New optimization algorithms ?
- New control algorithms ?

Not really

Perhaps

- Focus on
 - What to control?
 - What to optimize?
 - What are "good" system properties?

- Motivation
- Project Milestones and Tasks
- Results to date
 - System properties and agent objectives
 - Sensor Coordination and teams of sensors
 - Sensors in Energy Systems

Task Descriptions

Task	Description	Milestone
1.0	Project management and planning	
2.0	Determine impact of sensor configurations on system performance	0 🧹
2.1	Quantify effectiveness of sensor configuration	1 🗸
2.2	Form sensor teams to improve sensor effectiveness	2 🧹
3.0	Determine sensor objectives and demonstrate sensor reconfigurability	
3.1	Derive Sensor objective functions	3
3.2	Demonstrate system reconfigurability in simulation	4
3.3	Demonstrate system reconfigurability in testbed	5

System Level Objectives to Agent Objectives

Desirable System Properties

- Factoredness:
 - Alignment
 - Modularization
 - Self-organization

$$\mathcal{F}_{g_i} = \frac{\sum_{z'} u[((g_i(z) - g_i(z'))(G(z) - G(z'))]}{\sum_{z'} 1}$$
$$(z'_{-i} = z_{-i})$$

Is what's good for me good for the full system?

• Sensitivity

$$L(g_i, z, z') = \frac{\|g_i(z) - g_i(z - z_i + z'_i)\|}{\|g_i(z) - g_i(z' - z'_i + z_i)\|}$$

- Signal to noise
- Locality

$$L(g_i, z) = \frac{\sum_{z'} L(g_i, z, z')}{\sum_{z'} 1}$$

Can I extract what's good for me from signal I receive?

• To get agent objective with high factoredness and sensitivity, start with:

$$g_i(\mathbf{Z}) = G(\mathbf{Z}) - G(\mathbf{Z}_{-i} + c_i)$$

 g_i is aligned with G $G(z_{-i}+c_i)$ is independent of i g_i has cleaner signal than G $G(z_{-i}+c_i)$ removes noise

• If g, G differentiable, then:

• To get agent objective with high factoredness and sensitivity, start with:

- Motivation
- Project Milestones and Tasks
- Results to date
 - System properties and agent objectives
 - Sensor Coordination and teams of sensors
 - Sensors in Energy Systems

Two sets of results

- Sensor coordination and teams of sensors
 - Basic efficiency
 - Response to failures
 - Scaling to very large systems

- Sensor coordination in Energy Systems
 - Basic optimization
 - Response to changes in system
 - Response to failures

Sensor Coordination: Defect Combination Problem

- Sensors have varying attenuations due to manufacturing defects
- How to select a subset to optimize aggregated attenuation

- How to coordinate hundreds or thousands of sensors?

Sensors make decisions: they choose to be on or off

- Three agent objectives:
 - o Global (G): Total system reward (objective)
 - o Difference (D): System objective minus "system objective without me"
 - o Estimated Difference (EDU): System objective minus "system with average me"
- Compare to:
 - Select Best Single Sensor (B): Centralized global search, Selects the best single sensor
 - o Random: Randomly select actions

200 Sensors

Problem 1: The Defect Combination Problem

500 Sensors, Defect Combination Problem

1000 Sensors

5000 Sensors

10000 Sensors

Kagan Tumer, Oregon State University

NETL Meeting 3/13/2012

DCP with hierarchical organization

No Hierarchies (Left)

- Agents coordinate directly

Hierarchical Organization (right)

- Agents form teams
- Teams coordinate internally
- Control agents coordinate teams

10,000 Sensors with Hierarchical Organization

- Sensing agents randomly divided into teams of 100
- One control agent per team
- Control agents coordinate the actions of teams

- Time step 0 to 5000: Sensing agents learn, control agents are on
- Time step 5000 to 10000: Control agents learn, sensing agents fixed

10000 Sensors with Hierarchical Organization

DCP: Hierarchical Teams and Robustness

• How does this approach handle sensor agent failures?

- Failure experiments:
 - 10,000 agents
 - 0 to 100% sensor failures
 - Sensing agents learn from time step 0 to 2500
 - Some fail
 - System Reconfiguration: agents learn again, time step 2500 to 5000
 - Control agents learn using the teams with failures present: After step 5000

10000 Sensors with Hierarchical Organization, 10% Sensing Agent Failures

10000 Sensors with Hierarchical Organization, 20% Sensing Agent Failures

10000 Sensors with Hierarchical Organization, 50% Sensing Agent Failures

10000 Sensors with Hierarchical Organization, 80% Sensing Agent Failures

10000 Sensors with Hierarchical Organization versus Failure Rate

DCP: Hierarchical Teams and Robustness

• How does this approach handle control agent failures?

- Failure experiments:
 - 10,000 agents
 - 0 to 100% control agent failures
 - Sensing agents learn from time step 0 to 5000
 - Control agents learn from step 5000 to 7500
 - Some fail
 - System reconfiguration: control agents learn from 7500 to 10,000

10000 Sensors with Hierarchical Organization, 10% Control Agent Failures

10000 Sensors with Hierarchical Organization, 20% Control Agent Failures

NETL Meeting 3/13/2012

10000 Sensors with Hierarchical Organization, 50% Control Agent Failures

10000 Sensors with Hierarchical Organization, 80% Control Agent Failures

10000 Sensors with Hierarchical Organization versus Control Agent Failures

- What's the difference between DCP problem and Power Plant sensor problem?
 - DCP:
 - o Sensors have attenuation on value being measured
 - o Aggregate attenuation is the system reward
 - Power Plant:
 - Sensors have temperature and pressure attenuations
 - o T and P used to estimate enthalpy
 - o Error in enthalpy is the system reward
 - Reward is thus one step removed from actions, unlike DCP

- Sensors choose between actions:
 - Turn off
 - Measure T
 - Measure P
 - Measure T and P
- Enthalpy estimated based on sensed T and P values
- Error in enthalpy used as G(z)
- Minimizing G(z) leads to minimizing P and T sensing error

Power Plant: 100 Sensors

Power Plant: 1000 Sensors

NETL Meeting 3/13/2012

Power Plant: Scaling

Minimize Enthalpy Error versus Scaling Number of Sensors

Network versus Single Sensor (1% error), 200 Sensors (10% error)

Summary of Results

- Adaptive sensors cover system efficiently
- Sensor objective functions have significant impact on performance
 - Determine what agents should do
 - Ensure sensor objectives have high factoredness (alignedness)
 - Ensure sensor objectives have high sensitivity (signal to noise)
- Sensors adapt to new environmental conditions
- Hierarchical decision making improves performance
- Sensors reconfigure themselves if some fail

Long Term Benefits

- Directly to advanced energy systems
 - More efficient information collection
 - Quick response to sudden developments
 - Autonomous system reconfiguration
- To the Department of Energy and US Govt
 - Smart power grid
 - Emergency response
 - Self-organizing nano/micro devices
- To American Public
 - Smart house
 - Smart airports

National Energy Technology Laboratory (NETL), 2007

Kagan Tumer, Oregon State University

NETL Meeting 3/13/2012

Contact info: Kagan Tumer Oregon State University

kagan.tumer@oregonstate.edu http://engr.oregonstate.edu/~ktumer