

Exceptional service in the national

interest

Laser-Based Detection of **Trace-Level Contaminants**

<u>Alexandra Hoops</u>, Salvatore Birtola, David Chandler, Sean Moore, Brian Patterson, Kevin Strecker NETL 2012 Crosscutting Research Review Meeting - 3/12/12

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Outline

- Motivation
- Dual-etalon, frequency-comb cavity ring-down spectrometer
- Proof-of-principle experiments: H₂O, O₂
 - Setup I: broadband laser, low-resolution cavity
 - Setup II: narrowband laser, high-resolution cavity
- Application to HCl detection
 - HCl spectroscopy
 - Component selection and next-generation dual-etalon spectrometer design
- Summary and next steps

Outline

Motivation

- Dual-etalon, frequency-comb cavity ring-down spectrometer
- Proof-of-principle experiments: H₂O, O₂
 - Setup I: broadband laser, low-resolution cavity
 - Setup II: narrowband laser, high-resolution cavity
- Application to HCl detection
 - HCl spectroscopy
 - Component selection and next-generation dual-etalon spectrometer design
- Summary and next steps

Motivation

- Recently promulgated regulations regarding hazardous-air-pollutant (HAP) emissions from utility coal boilers include:
 - Substantial reductions in allowable emission levels, especially for new plants
 - Increased monitoring and reporting requirements
- Determination of HAP emission limits based on:
 - Environmental and health effects
 - Capabilities of monitoring approaches
- Potential for greater emissions control with advanced sensors that can operate with high-sensitivity, specificity, and with a fast time response
- HCl identified as a key HAP for which current continuous emission monitors (CEMs) are inadequate

Laser-Based Detection of Trace-Level Contaminants

HCI CEMs

- Optical approaches offer high sensitivity and specificity
 - Tunable diode laser spectroscopy
 - Fourier transform infrared spectroscopy (FTIR)
 - Detection sensitivities of currently available HCl CEMs
 - Extractive: 0.1 ppm
 - Probe: 0.2 ppm
 - Cross duct: 60 ppm
 - Existing technology sufficient to meet monitoring requirements for existing utility coal boilers, but inadequate for new units
 - Goal: to develop an *in situ* monitoring approach with detection sensitivity < 0.1 ppm

Outline

Motivation

- Dual-etalon, frequency-comb cavity ring-down spectrometer
- Proof-of-principle experiments: H₂O, O₂
 - Setup I: broadband laser, low-resolution cavity
 - Setup II: narrowband laser, high-resolution cavity
- Application to HCl detection
 - HCl spectroscopy
 - Component selection and next-generation dual-etalon spectrometer design
- Summary and next steps

Traditional Cavity Ring-Down Spectroscopy (CRDS)

- Principles of operation:
 - Laser pulse is injected into a high finesse cavity and the decay of light intensity, I(t), leaked out of the cavity is monitored:

 $I(t) = I_0 e^{-t/\tau}$

- Decay constant, τ, of the cavity depends on the mirror reflectivity, scattering, and absorption by the background gas
- Absorption by analyte present in cavity increases decay rate
- Advantages
 - High sensitivity: long path length from multiple passes through the cavity
 - Ring down time not sensitive to variations in laser intensity
- Key disadvantages
 - Observed intensity decay not spectrally resolved → to acquire a spectrum, the laser wavelength must be scanned
 - Spectral resolution limited by laser linewidth, necessitating high-quality laser source

Dual-Etalon, Frequency-Comb Cavity Ring-Down Spectroscopy

- New technique^{*} recently developed at Sandia to generate a broad-bandwidth, high-resolution spectrum with the sensitivity of CRDS in a single laser pulse
- Broad bandwidth laser beam directed through two etalon cavities of slightly different lengths
- Output beams are two frequency combs with spacings set by free spectral ranges (FSRs) of etalon cavities
- Difference in spacing between the frequency combs generates beat frequencies when signals from the the two cavities are combined
- Absorption spectrum can be reconstituted from the observed interference pattern

*Patent submitted 2011

Simulated Etalon Output

- Etalon 1 free spectral range: 1.5 GHz
- Etalon 2 offset: 100 MHz

Generation of Beat Frequencies

- Sandia National Laboratories
- Heterodyning two frequency combs results in additional beat frequencies, shifting spectrum to lower frequencies
- Key to high resolution: frequency walk-off of the two combs ensures that each optical frequency corresponds to a unique rf frequency

Impact of Etalon FSR Offset

- Simulated Gaussian profile width: 0.1 nm
- Decreasing difference in free spectral ranges of cavities increases width of captured spectrum
- Upper limit: spectral overlap
 - Non-overlapped spectral width: FSR×N_{BF}
 - N_{BF} : number of beat frequencies in nonoverlapped region (N_{BF} = 0.5 FSR / ΔFSR)
- Lower limit: resolving power for features of interest (function of ring-down time)

Laser-Based Detection of Trace-Level Contaminants

Dual-Etalon, Frequency-Comb CRDS Characteristics

- Width of single-shot spectrum determined by laser bandwidth
- Maximum spectral resolution equals free spectral range of etalons, not laser linewidth
- Laser requirements (spatial beam quality, linewidth, stability) relaxed in comparison to traditional CRDS
- Sensitivity of CRDS with a single laser shot
- Additional sensitivity can be achieved with signal averaging

Outline

- Motivation
- Dual-etalon, frequency-comb cavity ring-down spectrometer
- Proof-of-principle experiments: H₂O, O₂
 - Setup I: broadband laser, low-resolution cavity
 - Setup II: narrowband laser, high-resolution cavity
- Application to HCl detection
 - HCl spectroscopy
 - Component selection and next-generation dual-etalon spectrometer design
- Summary and next steps

Proof-of-Principle Experiments

- Goal: demonstrate feasibility of dual-etalon, frequency-comb cavity ringdown spectrometer
- Target: weak H₂O absorption overtones accessible with readily available dye lasers

Laser-Based Detection of Trace-Level Contaminants

Experimental Setup I

- Laser: amplified broadband dye laser w/DCM
 - Laser thought to lack longitudinal mode structure common in pulsed dye laser systems
 - Pulse energy: 10 mJ
 - Pulse width: 65 ps
 - Repetition rate: 20 Hz
 - Bandwidth: 15 nm
- Bandpass filter to prevent spectral overlap
 - 1 ± 0.2 nm FWHM
 - Center λ: 632.8 nm
 - Peak transmission: 50%
 - Out-of-band transmission (200-1100 nm): <0.01%
- Etalon cavities:
 - Length: 10 cm (1.5-GHz FSR)
 - Mirror reflectivity: >99.5%
 - Confocal configuration: beam collimated in forward direction and focused in cavity center on return
- Fiber coupling for spatial filtering of higher-order cavity modes
- Detector: 1.2-GHz photodiode coupled to 4-GHz oscilloscope

Ring-Down Signals

Interaction of Frequency Combs Apparent in Fourier Transforms of Ring-Down Signals

Sandia National

Variable, Structured Laser Intensity Profile

Laser-Based Detection of Trace-Level Contaminants

Sandia National Laboratories

Laser Profile

- Independently measure laser profile with 1-m spectrometer
- Confirmation that laser output has considerable structure and pulse-to-pulse variations
- Filtered laser profile:
 - Center λ: 632.8 nm
 - FWHM: 0.98 nm
 - 1/e² full width: 2.0 nm

Data Analysis with Structured Laser Profile: 2 Approaches

- Signal averaging
 - With a sufficient number of averages, gaps in laser spectral profile are minimized
 - However, an observed drift in signal due to thermal fluctuations impedes simple signal averaging:
 - Simulated Gaussian profile, 1.5-GHz FSR:

- ±40 kHz in ΔFSR (±2.7 µm change in cavity length) causes shift of 36 MHz in Fourier transform (2.5 cm⁻¹ shift in wavelength spectrum)
- Measure decay of individual beat frequencies in Fourier transform
 - Cavity ring-down signals independent of laser intensity
 - However, peaks may be missed if the laser power is too low

Examine Decay of Individual Beat Frequencies

Laser-Based Detection of Trace-Level Contaminants

Absorption Spectra of Air

* Resolution limited by cavity decay constant

Spectral Resolution

- Ultimate spectral resolution limit determined by etalon FSR
- However, ability to resolve beat frequencies is limited by ring-down times (Fourier transform resolution determined by time window)
- Assuming cavity decay constant sets resolution, for τ = 75 ns:
 - Fourier transform resolution: 13 MHz
 - Corresponding spectral resolution: 0.95 cm⁻¹

Experimental Setup II

Setup Comparison

		Setup I	Setup II
Laser	Wavelength	633 nm	629 nm
	Pulse energy	10 mJ	3 mJ
	Pulse width	65 ps	6 ns
	Linewidth	25 cm ⁻¹	0.15 cm ⁻¹
Cavities	Length	10 cm	50 cm
	FSR	1.5 GHz	300 MHz
	Δ FSR	700 kHz	240 kHz
	Mirror reflectivity	>99.5%	>99.99%
	Cavity decay constant, τ	75 ns	50 μs
Detector		1.2-GHz photodiode	PMT

- Considerably smaller spectral region captured with single pulse
- Higher mirror reflectivity and longer cavity length results in longer decay constant, increased sensitivity, and higher spectral resolution

Results and Analysis

Laser-Based Detection of Trace-Level Contaminants

Absorption Spectra

 Excellent agreement between observed spectra taken w/dual-etalon, frequencycomb spectrometer and that from the lower-resolution conventional CRDS method

Outline

- Motivation
- Dual-etalon, frequency-comb cavity ring-down spectrometer
- Proof-of-principle experiments: H₂O, O₂
 - Setup I: broadband laser, low-resolution cavity
 - Setup II: narrowband laser, high-resolution cavity
- Application to HCl detection
 - HCl spectroscopy
 - Component selection and next-generation dual-etalon spectrometer design
- Summary and next steps

HCI Spectroscopy

- Strong absorption features spanning 3.2-3.8 μm
- Simple, well-resolved spectrum

Non-Negligible Background Absorption

- HITRAN simulation assumptions:
 - Primary gas components:
 6% H₂O, 4% O₂, 14% CO₂,
 76% N₂

Absorption (%)

- HCl concentration: 0.1 ppm
- Additional species included (ex. SO₂, NO, NO₂)
- Temperature: 200 °C
- Path length: 100 m
- Primary background absorption from H₂O, and to a lesser extent CO₂

Wavelength (μm)

Discernible HCl Features Above Background

With high-resolution spectrometer expect to be able to discern HCl above background

Absorption Path Length and Spectral Resolution

- Increased path length \rightarrow greater absorption
- Increased ring-down time/cavity decay constant associated with a longer path length → higher resolving power in FFT
- Calculate spectral resolution assuming:
 - FSR: 150 MHz → maximum spectral resolution: 0.005 cm⁻¹
 - △FSR: 100 kHz
 - Path length-limited spectral resolution = (FFT resolution) x (FSR / Δ FSR)

rf frequency \rightarrow wavelength conversion

Path Length (m)	Ring-down time (μs)	FFT Resolution (MHz)	Spectral Resolution (cm ⁻¹)	Spectral Resolution Limitation
50	0.17	6.0	0.3	path length
500	1.7	0.6	0.03	path length
5000	17	0.06	0.005	etalon FSR

Absorption Path Length vs. HCl Signal/Background

- Simulate absorption spectra with and without HCl for calculated spectral resolutions
- Increasing path length/increasing spectral resolution:
 - Initially improves ability to distinguish HCl features above background
 - At longer path lengths, background absorption dominates the spectra, lowering the signal/background ratio
- Feature B optimum path length
 - ~500 m (1.7-µs ring-down time)
 - Signal/background: ~17

Experimental Setup – Laser Source

- Custom-built Nd:YAG-pumped OPO/OPA
- Pump laser: Continuum Surelite
 - Pulse energy: 500 mJ
 - Pulse width: 9 ns
 - Repetition rate: 10 Hz
- OPO/OPA
 - Measured pulse energy at 3.6 μm: 15 mJ
 - Bandwidth: estimate based on phase matching conditions
 - Seeded pump: 2 cm⁻¹
 - Unseeded pump: 19 cm⁻¹

Generation of 3.6 µm

- Pump λ: 532 nm
- Crystal: KTP, type II phase matching
- Output: tunable signal light over 710-885 nm
- OPA:
 - Pump λ: 1064 nm
 - Seed: idler from OPO
 - Crystals: KTA, type II phase matching, walk-off compensating geometry
 - Output: tunable mid-IR light over 1.35-5 μm via difference-frequency mixing

Sandia

Experimental Setup – Monolithic Dual-Etalon Assembly

- Primary goals:
 - Minimize thermal variations between two cavities, which adds considerable complexity to the data analysis and increases measurement uncertainty
 - Independent adjustment of cavity mirrors to enable precise alignment, ensuring maximum ring-down times
- Additional features:
 - Multiple gas/vacuum access points
 - HCI-resistance
 - Stable, rugged unit
- Cavity length: 1 m
 - FSR: 150 MHz
 - Spectral resolution limit: 0.005 cm⁻¹

- Two etalon cavities thermally coupled
- Multiple conflat flanges for gas/vacuum line access
- 0.5"-diameter cavity mirrors contained within an adjustable insert

Design – Cut-Away Views

- Concentric cavity arrangement:
 - Fundamental mode of the cavity focuses tightly at the cavity center for both path directions
 - Aperture incorporated at this focus will reduce contribution of higher order modes to the observed signal → reduction in data uncertainty

Design – Mirror Insert

- Mirrors mount housed within an insert
- Mirror insert can be translated and angled slightly within cavity bore via adjustment screws
- Micrometer provides additional tip/tilt control of the mirror mount within the insert

Experimental Setup – Additional Key Components

- Cavity mirrors
 - Concentric configuration: 0.5-m radius of curvature
 - Confocal configuration: 1-m radius of curvature
 - Reflectivity: 99.98%
- Fluoride glass fiber
 - Transmission range: 0.3-4.5 μm
 - Typical loss: <0.2 dB/m at 3.6 μm
- Detector: InSb photodiode
 - Rise time: 3 ns
 - Bandwidth: 120 MHz
 - Requires liquid N₂ cooling

Outline

- Motivation
- Dual-etalon, frequency-comb cavity ring-down spectrometer
- Proof-of-principle experiments: H₂O, O₂
 - Setup I: broadband laser, low-resolution cavity
 - Setup II: narrowband laser, high-resolution cavity
- Application to HCl detection
 - HCl spectroscopy
 - Component selection and next-generation dual-etalon spectrometer design
- Summary and next steps

Summary

- Dual-etalon, frequency-comb cavity ring-down spectrometer is being developed at Sandia to generate a broad-bandwidth, high-resolution spectrum with the sensitivity of CRDS in a single laser pulse
 - Width of single-shot spectrum determined by laser bandwidth
 - Maximum spectral resolution set by etalon FSR, not laser linewidth
- The feasibility of this spectroscopic detection approach has been demonstrated with air
 - Developed data analysis tools
 - Lessons learned from initial proof-of-principle experiments incorporated in design of next-generation dual-etalon assembly
- Components for application to HCl detection at 3.6 µm have been obtained

Next Steps

• FY12

- Assemble spectrometer for HCl detection
- Evaluate HCl spectral signature
- Quantify HCl detection sensitivity
- Evaluate impact of primary flue gas constituents and potential spectroscopic interference species

• FY13-14

- Couple dual-etalon, frequency-comb cavity ring-down spectrometer with flue gas from laboratory scale burner
- Design and assemble a portable system

Contact Information

- Principle Investigator:
 - Alexandra Hoops
 - email: aahoops@sandia.gov
- NETL Project Manager:
 - Steven Seachman
 - Email: Steven.Seachman@netl.doe.gov