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Introduction 

 Electrical Capacitance Volume Tomography (ECVT) is a 3D 
imaging technique for viewing cold flow processes. It can be 
applied to hot units too. 

 ECVT is among few know non-invasive imaging tools that 
can be used for commercial applications (low cost, suitable 
for scale-up, fast, and safe) 

 Tech4Imaging LLC is a spin-off company from The Ohio 
State University to develop and commercialize imaging 
technologies, including ECVT.  

 Tech4Imaging, with DOE support, is developing a complete 
system of acquisition hardware, sensors, and reconstruction 
software. 
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Selection of Imaging Technology 

• Safety: To user and to process 

• Cost: fixed and variable 

• Complexity: implementation and operation 

• Speed: rate of capture 

• Flexibility: to different vessel sizes and shapes 

• Resolution: as a percentage of imaged volume 
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Conventional Tomography 
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W. Warsito, Qussai Marashdeh, and Liang-Shih Fan “Electrical Capacitance Volume Tomography” IEEE Sensors Journal 7 
(2007) 525–535 
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Reconstruction Methodology Characteristics Example 

Single Step Linear 
Back Projection 

The sensor system is 
linearized (usually by 
constructing a 
sensitivity matrix). The 
image is obtained by 
back projecting the 
capacitance vector 
using the sensitivity 
matrix. 

Fast, low image 
resolution, and 
introducing 
image artifacts  

LBP 

Iterative Linear 
Back Projection 

The mean square error 
between the 
capacitance data and 
forward solution of the 
final image is 
minimized by iterative 
linear projections using 
the sensitivity matrix. 

Slower than 
Single Step 
Linear. Providing 
better images 
than Single Step 

Landweber ILBP 

Optimization A set of objective 
functions are 
minimized iteratively to 
provide the most likely 
image. Different 
optimization algorithms 
and objective functions 
can be used. 

Slower than 
Iterative Linear 
Back Projection. 
Providing better 
images than 
Iterative Linear 
Back Projection 

3D-NNMOIRT 

ECVT Reconstruction 
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2. ECVT Verification 

1) Comparison of the local time-averaged solids 
concentrations by ECVT, ECT, and optical fiber probe 
 

2) Comparison of the time-averaged cross-sectional solids 
concentrations by ECT and optical fiber probe and the 
time-averaged volume solids concentration obtained by 
ECVT and pressure transducer  
 
 

3) Comparison of ECVT and MRI 
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Experimental Conditions  
2 
FCC particle: 
Particle size: 60 µm 
Particle density: 1400 kg/m3 

 
Fluidized bed: 
ID: 12 inch 
Disengagement section: 0.5 m 
Total height: 2.3 m 
Two-stage cyclone 
 
Distributor: 
Porous plate with a pore size of 20 µm 
Fractional free area: 60% 
 
Gas: 
Air density:1.225 kg/m3 

Air viscosity: 1.8x10-5 Ns/m2 

1 
FCC particle: 
Particle size: 60 µm 
Particle density: 1400 kg/m3 

 
Fluidized bed: 
ID: 4 inch 
Total height: 2.5 m 
Two-stage cyclone 
 
Distributor: 
Porous plate with a pore size of 20 µm 
Fractional free area: 60% 
 
Gas: 
Air density:1.225 kg/m3 

Air viscosity: 1.8x10-5 Ns/m2 
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Comparison of the time-averaged cross-sectional solids 
concentrations obtained by ECT and optical fiber probe 

and the time-averaged volume solids concentration 
obtained by ECVT and pressure transducer for a 4-in gas-

solid fluidized bed with FCC particles (dp = 60 µm; ρp = 
1400 kg/m3)  
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Courtesy of: The Ohio State University 



Electrical Capacitance Volume Tomography –  
Comparison with MRI 
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Electrical Capacitance Volume Tomography –  
Comparison with MRI 

Work of D.J. Holland1, Q. Marashdeh2, C.R. Müller1, F. Wang2, J.S. Dennis1, 
L.-S. Fan2, L.F. Gladden1             

 1Cambridge University, 2The Ohio State University 

Superficial Gas Velocity: 0.04 m/s;  
MRI: every frame (26 ms) 

ECVT: every 2nd frame (25 ms) 



Electrical Capacitance Volume Tomography –  
Comparison with MRI 

Work of D.J. Holland1, Q. Marashdeh2, C.R. Müller1, F. Wang2, J.S. Dennis1, 
L.-S. Fan2, L.F. Gladden1       

 1Cambridge University, 2The Ohio State University 

Superficial Gas Velocity: 0.04 m/s;  
MRI: every frame (26 ms) 

ECVT: every 2nd frame (25 ms) 
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3. Horizontal gas jet penetration in a 
gas-solid fluidized bed 
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(a) t=0; (b) t=12.5 ms; (c) t=25.0 ms; (d) t=37.5; (e) t=50.0 ms; (f) t=62.5 ms. Ug=0.064 m/s, U0=15 m/s  
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Fei Wang, Zhao Yu, Qussai Marashdeh, Liang-Shih Fan * “Horizontal gas and gas/solid jet penetration in a gas–solid 
fluidized bed ” Chemical Engineering Science 65 (2010) 3394–3408 



Experimental Conditions 
FCC particle: 
Particle size: 60 µm 
Particle density: 1400 kg/m3 

 
Fluidized bed: 
ID: 12 inch 
Disengagement section: 0.5 m 
Total height: 2.3 m 
Two-stage cyclone 
 
Distributor: 
Porous plate with a pore size of 20 µm 
Fractional free area: 60% 
 
Gas: 
Air density:1.225 kg/m3 

Air viscosity: 1.8x10-5 Ns/m2 



Sensors and Experimental Setup 

Courtesy of: The Ohio State University 



Side Injection 

Courtesy of: The Ohio State 
University 



Horizontal gas jet penetration in a gas-
solid fluidized bed 

Comparison of the maximum penetration lengths of the 
horizontal gas jet obtained by ECVT experiments and model 

prediction for the 0.3 m gas-solid fluidized bed  

Comparison of the maximum width of the horizontal 
gas jet obtained by ECVT experiments and model 

prediction for the 0.3 m gas-solid fluidized bed  

0
s sε ε=Horizontal jet in a gas-solid fluidized bed: 

• solid particle holdup varies in the radial and axial directions 
• particles entrain into the jet 
• momentum is transferred from the jet to the solid particle 
• the closure of the jet is due to the momentum loss 

Fei Wang, Zhao Yu, Qussai Marashdeh, Liang-Shih Fan * “Horizontal gas and gas/solid jet penetration in a gas–solid 
fluidized bed ” Chemical Engineering Science 65 (2010) 3394–3408 



Superficial gas velocity: Ug=0.108 m/s 
Side gas velocity: Ug_side=15.5 m/s 
Side solids velocity: Us_side=0 

Fei Wang, Zhao Yu, Qussai Marashdeh, Liang-Shih Fan * 
“Horizontal gas and gas/solid jet penetration in a gas–solid 
fluidized bed ” Chemical Engineering Science 65 (2010) 3394–
3408 



Jet shape from ECVT images 

 

t=0 t=12.5 ms t=25 ms 

t=37.5 ms t=50 ms t=62.5 ms 

Ug=0.064 m/s, U0=15 
m/s 

(Maximum jet penetration) 

Fei Wang, Zhao Yu, Qussai Marashdeh, Liang-Shih Fan * 
“Horizontal gas and gas/solid jet penetration in a gas–solid 
fluidized bed ” Chemical Engineering Science 65 (2010) 3394–
3408 



4. ECVT Sensor Applications 
Cylindrical shape sensor 



ECVT sensor design 
Sensors with complex geometries 
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domain 
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Planar sensor 
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Sensing domain 
(voxels) 

Planar sensor electrodes 

Cylindrical Duct sensor 
electrodes 

Designs for Various Geometries 



ECVT sensor design 

Sensor Type Sensor Symmetry Axial Resolution Radial Resolution 

Cylindrical sensor with 1 
layer 

High Low, sensitivity decreases 
toward center. 

High, sensitivity decreases 
toward center. 

Cylindrical sensor with 2 
shifted layers 

Moderate Moderate, sensitivity 
decreases toward 

center. 

Moderate, sensitivity 
decreases toward 

center 

Cylindrical sensor with 3 
shifted layers 

Moderate High, sensitivity decreases 
toward center. 

Moderate-High, sensitivity 
decreases toward 

center. 

Planar sensor with shifted 
planes 

Moderate Low, sensitivity decreases 
away from sensor. 

High, Sensitivity decreases 
away from sensor. 

Bent sensor Low Depends on sensor plate 
arrangement 

Depends on sensor plates 
arrangement 

Comparison of different sensor geometries in terms of symmetry, axial resolution 
and radial resolution  

Fei Wang, Qussai Marashdeh, Liang-Shih Fan * and Warsito Warsito “Electrical Capacitance Volume Tomography: Design and 
Applications” Sensors 2010, 10, 1890-1917; 
 



bed surface 

ECVT sensing region 

slurry bubble 
column 

Snapshots of bubble bursting at the surface 
of a slurry bubble column by ECVT: (a) 3D 
image before bubble bursting; (b) 3D image 
after bubble bursting  

Surface of Slurry Bubble Columns 

Courtesy of: The Ohio State University 



6. Complex Geometries Examples 



Gas

Gas

Riser

Cyclone

Gas outlet

Downer

Distributor

ECVT sensor II

ECVT sensor I

90 Degrees Bend & Riser 

Courtesy of: The Ohio State University 



3-D gas-solid flow patterns in the exit region 
of a gas-solid CFB riser 
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Solids holdup distribution in the bend of the CFB riser at Ug=1.36 
m/s and Gs=21.2 kg/m2s:vertical slices and horizontal slices  
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Courtesy of: The Ohio State University 



Real-Time Imaging: Bubble 
Tracking 

Courtesy of: NETL, U.S. Department of Energy  



Scale-Up ECVT Sensors 

12 inch ID 

60 inch ID 
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NETL Riser, Inlet, & Exit Sensors 

Courtesy of: NETL, U.S. Department of Energy  



Combustion Imaging 

Ignition Stable Flame 



Combustion 
A change in heavy ion concentration has a remarkable effect on 
dielectric constant and conductivity of a medium containing free 
ionic species 

Smaller ions contribute less to changing dielectric constant. 
2 fω π=

iω
2

2 4 i i
c

i

n e
m
πω = , ,i i in e m

, angular frequency 

 , collision frequency of the ith ionic species with other molecules 

 
 with   the no./cm3, electrical charge, and mass of this ion respectively 

dielectric constant:  
and conductivity: 

ε
σ

H. Smith and T. M. Sugden, Studies on the Ionization Produced by Metallic Salts in Flames. III. Ionic Equilibria in Hydrogen/Air Flames Containing Alkali Metal Salts, 
Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, Vol. 211, No. 1104 (Feb. 7, 1952), pp. 31-58 

f , frequency of the electrical signal 



Ionization 

 Ionization occurs in flames during combustion 
The size and number of ions affect the conductivity 

of the flame more than it’s dielectric constant 
An electric capacitance response can be observed 

when introducing a flame between two plates. 
ECVT can be used to visualize combustion and 

flames based on variations in the capacitance 
signal 



H. Smith and T. M. Sugden, Studies on the Ionization Produced by Metallic Salts in Flames. III. Ionic Equilibria in Hydrogen/Air Flames Containing Alkali Metal Salts, 
Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, Vol. 211, No. 1104 (Feb. 7, 1952), pp. 31-58 

Ca 

Cb 
b aC C>



Experimental Condition 

Sensor: 4” ID, 3 layers, 12 channels 
Calibration material: Polyethylene 
Flame Source: Propylene (C3H6)  Flame torch  

 

2.3rε ≈



Combustion Imaging 

Stable Flame 



Capacitance Distribution 



Combustion Imaging 

Ignition Stable Flame Shut Down 
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Concluding Remarks 
ECVT is a non-invasive imaging technology that 

can be applied to image processes vessels of 
various diameters and shapes. 
 

ECVT is a unique imaging technology with its 
potential for commercial scale-up, combustions 
imaging, and hot unit applications. 
 

Tech4Imaging LLC has developed a commercial 
ECVT system for imaging multi-phase flow systems 
in various conditions. 
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