

Development and Implementation of 3D High Speed Tomography for Imaging Large-Scale, Cold-Flow Circulated Fluidized Bed

Qussai Marashdeh

Tech4Imaging LLC 4171 Fairfax Dr. Columbus, OH 43220

Introduction

- Electrical Capacitance Volume Tomography (ECVT) is a 3D imaging technique for viewing cold flow processes. It can be applied to hot units too.
- ECVT is among few know non-invasive imaging tools that can be used for commercial applications (low cost, suitable for scale-up, fast, and safe)
- Tech4Imaging LLC is a spin-off company from The Ohio State University to develop and commercialize imaging technologies, including ECVT.
- Tech4Imaging, with DOE support, is developing a complete system of acquisition hardware, sensors, and reconstruction software.

Process Tomography

X-ray

Electrical Capacitance Volume tomography System

Selection of Imaging Technology

- . Safety: To user and to process
- · Cost: fixed and variable
- . Complexity: implementation and operation
- . Speed: rate of capture
- . Flexibility: to different vessel sizes and shapes
- . Resolution: as a percentage of imaged volume

Preface

- 1. ECVT Technology
- 2. Verification
- 3. Jet Example
- 4. Sensors and Scale up Application
- 5. Complex geometries
- 6. Combustion Imaging

Volume Tomography Concept Conventional Tomography

W. Warsito, Qussai Marashdeh, and Liang-Shih Fan **"Electrical Capacitance Volume Tomography**" *IEEE Sensors Journal* 7 (2007) 525–535

Complete ECVT System Sensors Reconstruction& Data Viewing Acquisition Solid Fraction Bubble Iso-Surface & Tracking 40 -40 35 -35 -30 -30 -25~ 25 -20 -20 -15 -15 -10 -10 -5. 5. ²⁰15105 5 10 15 20 5¹⁰^{15²⁰} 20 15 10 5

ECVT Reconstruction

Reconstruction	Methodology	Characteristics	Example
Single Step Linear Back Projection	The sensor system is linearized (usually by constructing a sensitivity matrix). The image is obtained by back projecting the capacitance vector using the sensitivity matrix.	Fast, low image resolution, and introducing image artifacts	LBP
Iterative Linear Back Projection	The mean square error between the capacitance data and forward solution of the final image is minimized by iterative linear projections using the sensitivity matrix.	Slower than Single Step Linear. Providing better images than Single Step	Landweber ILBP
Optimization	A set of objective functions are minimized iteratively to provide the most likely image. Different optimization algorithms and objective functions can be used.	Slower than Iterative Linear Back Projection. Providing better images than Iterative Linear Back Projection	3D-NNMOIRT

Shape & Edge Detection Experimental Results

www.tech4imaging.com

Location Inside Sensor

ECVT Imaging

2. ECVT Verification

- 1) Comparison of the local time-averaged solids concentrations by *ECVT*, *ECT*, and *optical fiber probe*
- 2) Comparison of the time-averaged cross-sectional solids concentrations by *ECT* and *optical fiber probe* and the time-averaged volume solids concentration obtained by *ECVT* and *pressure transducer*
- 3) Comparison of ECVT and MRI

Experimental Conditions

FCC particle: Particle size: 60 μm Particle density: 1400 kg/m³

Fluidized bed:

ID: 4 inch Total height: 2.5 m Two-stage cyclone

Distributor:

Porous plate with a pore size of 20 μ m Fractional free area: 60%

Gas:

1

Air density:1.225 kg/m³ Air viscosity: 1.8x10⁻⁵ Ns/m² 2

FCC particle:

Particle size: 60 μm Particle density: 1400 kg/m³

Fluidized bed:

ID: 12 inch Disengagement section: 0.5 m Total height: 2.3 m Two-stage cyclone

Distributor:

Porous plate with a pore size of 20 μ m Fractional free area: 60%

Gas:

Air density:1.225 kg/m³ Air viscosity: 1.8x10⁻⁵ Ns/m²

Radial profiles of time-averaged solids concentration in a 4-in gas-solid fluidized bed with FCC particles $(d_p = 60 \ \mu m; \ \rho_p = 1400 \ \text{kg/m}^3)$ obtained by ECVT, ECT and optical fiber probe

Comparison of the time-averaged cross-sectional solids concentrations obtained by *ECT* and *optical fiber probe* and the time-averaged volume solids concentration obtained by *ECVT* and *pressure transducer* for a 4-in gassolid fluidized bed with FCC particles ($d_p = 60 \mu m$; $\rho_p =$ 1400 kg/m³)

> Comparison of the time-averaged crosssectional solids concentrations obtained by the *ECT* and the *optical fiber probe* and the time-averaged volume solids concentration obtained by the *ECVT* for a 12-in gas-solid fluidized bed with FCC particles ($d_p = 60 \ \mu m$; $\rho_p = 1400 \ kg/m^3$)

Courtesy of: The Ohio State University

Horizontal Position (mm)

Electrical Capacitance Volume Tomography – Comparison with MRI

Superficial Gas Velocity: 0.04 m/s; MRI: every frame (26 ms) ECVT: every 2nd frame (25 ms)

Work of **D.J. Holland¹**, **Q. Marashdeh²**, **C.R. Müller¹**, **F. Wang²**, **J.S. Dennis¹**, **L.-S. Fan²**, **L.F. Gladden¹** ¹Cambridge University, ²The Ohio State University

Electrical Capacitance Volume Tomography – Comparison with MRI

Superficial Gas Velocity: 0.04 m/s; MRI: every frame (26 ms) ECVT: every 2nd frame (25 ms)

Work of **D.J. Holland¹**, **Q. Marashdeh²**, **C.R. Müller¹**, **F. Wang²**, **J.S. Dennis¹**, **L.-S. Fan²**, **L.F. Gladden¹** ¹Cambridge University, ²The Ohio State University

Electrical Capacitance Volume Tomography – Comparison with MRI

MRI

the ECVT (×), 2D MR data (♦) and 1D ¹ F MR data (●).

Work of **D.J. Holland¹**, **Q. Marashdeh²**, **C.R. Müller¹**, **F. Wang²**, **J.S. Dennis¹**, **L.-S. Fan²**, **L.F. Gladden¹** ¹Cambridge University, ²The Ohio State University

3. Horizontal gas jet penetration in a gas-solid fluidized bed

Fei Wang, Zhao Yu, Qussai Marashdeh, Liang-Shih Fan * "Horizontal gas and gas/solid jet penetration in a gas–solid fluidized bed" *Chemical Engineering Science* 65 (2010) 3394–3408

Experimental Conditions

FCC particle:

Particle size: 60 μm Particle density: 1400 kg/m³

Fluidized bed:

ID: 12 inch Disengagement section: 0.5 m Total height: 2.3 m Two-stage cyclone

Distributor:

Porous plate with a pore size of 20 μ m Fractional free area: 60%

Gas:

Air density:1.225 kg/m³ Air viscosity: 1.8x10⁻⁵ Ns/m²

Sensors and Experimental Setup

Courtesy of: The Ohio State University

Side Injection

Courtesy of: The Ohio State University

Horizontal gas jet penetration in a gassolid fluidized bed

Comparison of the maximum penetration lengths of the horizontal gas jet obtained by ECVT experiments and model prediction for the 0.3 m gas-solid fluidized bed

Comparison of the maximum width of the horizontal gas jet obtained by ECVT experiments and model prediction for the 0.3 m gas-solid fluidized bed

Fei Wang, Zhao Yu, Qussai Marashdeh, Liang-Shih Fan * "Horizontal gas and gas/solid jet penetration in a gas–solid fluidized bed" *Chemical Engineering Science* 65 (2010) 3394–3408

Superficial gas velocity: Ug=0.108 m/s Side gas velocity: Ug_side=15.5 m/s Side solids velocity: Us_side=0

Fei Wang, Zhao Yu, Qussai Marashdeh, Liang-Shih Fan * "Horizontal gas and gas/solid jet penetration in a gas–solid fluidized bed" *Chemical Engineering Science* 65 (2010) 3394– 3408

Jet shape from ECVT images

(Maximum jet penetration)

t=0	t=12.5 ms	t=25 ms
t=37.5 mc	t=50 mc	t-62.5 mg
t=37.5 ms	t=50 ms	t=62.5 ms
Fei Wang, Zhao Yu, Qussai Marashdeh, Lia "Horizontal gas and gas/solid jet penetration	ng-Shih Fan * n in a gas–solid	Ug=0.064 m/s, U ₀ =15 m/s

"Horizontal gas and gas/solid jet penetration in a gas–solid fluidized bed" *Chemical Engineering Science* 65 (2010) 3394–3408

4. ECVT Sensor Applications

Cylindrical shape sensor

3D Concentration map

Axial Cross-sectional maps

SCR12-25

ECVT sensor design

Sensors with complex geometries

Designs for Various Geometries

ECVT sensor design

Comparison of different sensor geometries in terms of symmetry, axial resolution and radial resolution

Sensor Type	Sensor Symmetry	Axial Resolution	Radial Resolution
Cylindrical sensor with 1 layer	High	Low, sensitivity decreases toward center.	High, sensitivity decreases toward center.
Cylindrical sensor with 2 shifted layers	Moderate	Moderate, sensitivity decreases toward center.	Moderate, sensitivity decreases toward center
Cylindrical sensor with 3 shifted layers	Moderate	High, sensitivity decreases toward center.	Moderate-High, sensitivity decreases toward center.
Planar sensor with shifted planes	Moderate	Low, sensitivity decreases away from sensor.	High, Sensitivity decreases away from sensor.
Bent sensor	Low	Depends on sensor plate arrangement	Depends on sensor plates arrangement

Fei Wang, Qussai Marashdeh, Liang-Shih Fan * and Warsito Warsito "Electrical Capacitance Volume Tomography: Design and Applications" *Sensors* **2010**, *10*, 1890-1917;

Surface of Slurry Bubble Columns

Courtesy of: The Ohio State University

Snapshots of bubble bursting at the surface of a slurry bubble column by ECVT: (a) 3D image before bubble bursting; (b) 3D image after bubble bursting

6. Complex Geometries Examples

90 Degrees Bend & Riser

3-D gas-solid flow patterns in the exit region of a gas-solid CFB riser

Courtesy of: The Ohio State University

Ug=1.16 m/s

22

Real-Time Imaging: Bubble Tracking

Courtesy of: NETL, U.S. Department of Energy

Scale-Up ECVT Sensors

60 inch ID \rightarrow

←12 inch ID

Scale-up Unit

NETL Riser, Inlet, & Exit Sensors

Courtesy of: NETL, U.S. Department of Energy

Combustion Imaging

Ignition

Stable Flame

Combustion

A change in heavy ion concentration has a remarkable effect on dielectric constant and conductivity of a medium containing free ionic species dielectric constant: \mathcal{E} and conductivity.

$$\label{eq:eq:epsilon} \epsilon = 1 - \sum_i \frac{\omega_c^2}{\omega^2 + \omega_i^2}, \quad \sigma = \frac{1}{4\pi} \sum_i \frac{\omega_c^2 \omega_i}{\omega^2 + \omega_i^2},$$

Smaller ions contribute less to changing dielectric constant.

 $\omega = 2\pi f$, angular frequency f, frequency of the electrical signal

 ω_i , collision frequency of the ith ionic species with other molecules

 $\omega_c^2 = \frac{4\pi n_i e_i^2}{m_i}$ with n_i, e_i, m_i the no./cm³, electrical charge, and mass of this ion respectively

H. Smith and T. M. Sugden, Studies on the Ionization Produced by Metallic Salts in Flames. III. Ionic Equilibria in Hydrogen/Air Flames Containing Alkali Metal Salts, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, Vol. 211, No. 1104 (Feb. 7, 1952), pp. 31-58

Ionization

Ionization occurs in flames during combustion
The size and number of ions affect the conductivity of the flame more than it's dielectric constant
An electric capacitance response can be observed when introducing a flame between two plates.
ECVT can be used to visualize combustion and flames based on variations in the capacitance signal

H. Smith and T. M. Sugden, Studies on the Ionization Produced by Metallic Salts in Flames. III. Ionic Equilibria in Hydrogen/Air Flames Containing Alkali Metal Salts, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, Vol. 211, No. 1104 (Feb. 7, 1952), pp. 31-58

Experimental Condition

Sensor: 4" ID, 3 layers, 12 channels Calibration material: Polyethylene *ε_r* ≈ 2.3 Flame Source: Propylene (C₃H₆) Flame torch

Combustion Imaging

Stable Flame

Capacitance Distribution

Combustion Imaging

Stable Flame

Shut Down

Ignition

Concluding Remarks

 ECVT is a non-invasive imaging technology that can be applied to image processes vessels of various diameters and shapes.

 ECVT is a unique imaging technology with its potential for commercial scale-up, combustions imaging, and hot unit applications.

 Tech4Imaging LLC has developed a commercial ECVT system for imaging multi-phase flow systems in various conditions.

Acknowledgement

- The support of US. Department of Energy is gratefully acknowledged.
- The contribution of Professor L.S. Fan and his research group are also acknowledged.

Questions

4 TECH IMAGING