

Online, In-Situ Monitoring Combustion Turbines Using Wireless Passive Ceramic Sensors

Xun Gong¹, Linan An², and Chengying Xu³ 1. Department of Electrical Engineering and Computer Science (EECS) 2. Advanced Materials Processing and Analysis Center (AMPAC) 3. Department of Mechanical, Materials, and Aerospace Engineering (MMAE)

DEPARTMENT OF ELECTRICAL ENGINEERING & COMPUTER SCIENCE www.eecs.ucf.edu

Motivation

Harsh Environments

Combustion turbines

Physical Parameters Need to be Sensed

- □ Higher efficiency and less pollution
- Performance and reliability improvement

Sensor Requirement

- □ Survive in harsh environments (1300°C)
- □ High accuracy
- □ No electronic components
- □ Wireless and passive
- □ Small size
- □ Robust and inexpensive
- New materials needed

Courtesy http://www.powerlabs.org/turbine.htm

High-Temperature Ceramic Materials

Requirements

- Reasonable temperature-dependent dielectric constant
- ✓ Low dielectric loss
- Problems
 - Decrease dielectric loss
- Possible mechanisms of dielectric loss of PDCs
 - ✓ Electron loss
 - ✓ Atomic loss
- Approach
 - Strengthening the network structure
 - Decreasing the defects

Boron Doped SiBCN

Tailor the HT1800-to-BDS ratio to Control the Si-to-B ratio

Reaction Mechanisms

Polyborosilazanes with various boron content were synthesized by: 1. Hydroboration reaction $CH = CH_2 + B - H \xrightarrow{\Delta} B - CH - CH_3$ 2. Dehydrocoupling reaction $N - B + B - H \xrightarrow{\Delta} B - N + H_2$

3. Hydroboration is prior to dehydrocoupling reaction (B prefers to bond C)

Structure of SiBCN

- 1. ²⁹Si-NMR was curve-fitted by three peaks.
- 2. SiC-to-SiN ratio increase with increasing temperature.

- 1. Curve fitting of ¹¹B-NMR identify the <u>BN₂C</u> group at 35 ppm and <u>BN₃</u> groups at 26 ppm.
- 2. B-C to B-N ratio suggests that the C atoms are excluding from $\underline{B}N_2C$ unit.
- 3. Hexagonal BN phase (h-BN) evolved from amorphous BN phase for at 1500 °C.

Room-Temperature Characterization of Different Material Compositions

Measurement Results (1300°C)

- Si_4B_1CN Sample
- Sintered at 1200°C
- Measured up to 1300°C

Temperature Sensor

- Measurement Results
 - \Box Si₄B₁CN Sample
 - □ Sintered at 1100°C
 - □ Measured up to 1150°C
 - □ Sensing distance: 10 mm

Pressure Sensor Fabrication Details: Micro-machining

- Micro-level Fabrication Methods for Advanced Materials
 - □ Traditional MEMS methods
 - □ EDM, ECM methods
 - □ Laser based method

Mechanical Micro-machining

- □ 3-D patterning ability
- □ Cost-effective
- □ High Aspect ratio
- □ Highly productive
- □ Super precise and good quality
- □ Flexible and controllable

Fabricated in RISE lab (2011)

Micro-machinability Study on PDCs

Experiment set-up of 5-axis micro machine tool

- □ Tetrahedral Frame
- □ Spindle system
- □ Feed system
- □ Measurement system
- □ Real time controller

High speed electrical spindle

High resolution motion table

NI real-time controller

Kistler dynamometer

PXI data acquisition cards

Sensor Fabrication Study on PDCs

Micro Milling Sensor Base

□ Optimal cutting condition: spindle speed 20,000 RPM; feed speed 0.5 mm/s and depth of cut 20 µm

Sensor Fabrication Study on PDCs

- Micro Milling Sensor Base
 - Feed rate: 0.5 mm/s
 - Spindle speed: 20,000 RPM
 - Depth of cut: axial 20 μ m; radial 200 ~ 260 μ m
 - Tool diameter: 635 µm (solid carbide 4 flutes end mill)

Top view of the machined sensor base

16

Conclusion

- Novel characterization setup is presented
 - □ SiCN materials have been characterized up to 1300°C
- Various wireless passive sensing mechanisms are investigated
- Wide applications in new generation of efficient turbines

Acknowledgements:

<u>Courtesy</u>

Morgan Technical Ceramics Certech

http://www.engineerlive.com/Design-Engineer/Aerospace/Ceramic_cores_stay_stable_as_casting_temperatures_soar/21520