WestVirginiaUniversity

College of Engineering and Mineral Resources

Development of Self-Powered Wireless-Ready High Temperature Electrochemical Sensors for In-Situ Corrosion Monitoring of Boiler Tubes

Naing Naing Aung, Xingbo Liu

03-12-2012

Project Objectives

- To develop in-situ corrosion monitoring sensors for corrosion of USC boiler tubes in next generation coal-based power systems
- ➤ To develop thermal-electric based energy harvesting and telecommunication devices for the self-powered wireless ready sensor system

Current Milestones

July to September 2011

Initiate preliminary high-temperature electrochemical corrosion rate (ECR) probe design

October to December 2011

To complete the design and construction of (ECR) probe for lab scale corrosion experiments and to complete laboratory test configuration

January to March 2012

To demonstrate the results of the corrosion tests as a function of exposure time, temperature and various simulated boiler exposure environments in lab-scale setting

Project Milestone Status July to September 2011

High temperature electrochemical corrosion rate (ECR) probe for lab scale corrosion experiments has been designed and constructed.

Developed High Temperature Corrosion Sensor

Counter electrode

Reference electrode

Working electrode 1 & 2

Ag/Ag+/Fused-Quartz Reference Electrode

Stability Reproducibility Reusability

Time Dependency of the Potential of Ag/Ag+/fused-quartz Reference Electrode in Synthesis Coal Ash Mixture at 800 °C

Project Milestone Status October to December 2011

Construction of custom-designed coal ash exposure unit for lab-scale corrosion experiments has been completed in WVU.

Laboratory Test Configuration

Project Milestone Status January to March 2012

Coal ash corrosion behaviour of nickel- based Superalloy IN740-1 in synthetic coal ash mixture at 800 °C as a function of exposure time

Corrosion in Coal-Fired Boilers

In the Upper Furnace

Higher Steam Temperature and Pressure Deposit-induced Liquid Phase Corrosion

Coal Ash Corrosion in Superheater/Reheater alloys

In the Lower Furnace

Low-NO_X combustion produces H₂S in the flue gas and FeS in the deposit due to incomplete combustion of the sulfur-bearing species in coal

Furnace Wall Corrosion on Waterwalls of the Boiler Tubes

Coal Ash Corrosion Mechanism

Formation of molten alkali iron sulfates $(Na, K)_3Fe(SO_4)_3$ and fluxing away of protective oxide film

Direct reaction between bare metal and reduced sulphate species

IN 740-1 Ni-Base Superalloy

Ni	Cr	Fe	Cu	Co	Mo	Nb	Al	Mn	Ta	Ti	W	Si	C	Sn
35-80	5-25	<42	<35	<30	<17	<6	<5	<5	<5	<5	<5	<1	0	0

Intermetallic Phases in IN 740-1 Ni-Base Superalloy

Corrosive Media For Coal Ash Corrosion

Synthetic Flue Gas

 $15 \text{ CO}_2 + 4 \text{ O}_2 + 1 \text{SO}_2 + 80 \text{ N}_2$

Coal Ash Mixture

Ash+10% Alkali Sulfates+1% NaCl

mp=800 °C

Ash - SiO₂, Al₂O₃, and Fe₂O₃ in the ratio of 1:1:1 by weight mp=1600 °C mp=2027 °C mp=1566 °C

Alkali sulfate mixture - Na₂SO₄ and K₂SO₄ in the ratio of 1:1 by weight mp= 880 °C mp= 1067 °C

Electrochemical Techniques Used to Study Corrosion

- Open Circuit Potential (OCP) Measurement
- Linear Polarization Resistance (LPR)
- Electrochemical Impedance Spectroscopy (EIS)
- Electrochemical Noise Analysis (ENA)

OCP for Deep Molten Coal Ash Corrosion of IN740-1 Alloy at 800 °C

Without Synthetic Flue Gas

With Synthetic Flue Gas

 $OCP = -274 \text{ mV vs. } Ag/Ag^+$

OCP = -497 mV vs. Ag/Ag+

E_{corr} and I_{corr} Values for Deep Molten Coal Ash Corrosion of IN740-1 Alloy at 800 °C

Electrochemical Impedance for Deep Molten Coal Ash Corrosion of IN740-1 Alloy at 800 °C

After 2 h

The transport of the oxygen to the alloy surface and the formation of a oxide scale

Electrochemical Impedance for Deep Molten Coal Ash Corrosion of IN740-1 Alloy at 800 °C

Forming a porous scale in molten salts and the corrosion of the alloy is controlled by diffusion of the oxidant in the melt

Electrochemical Impedance for Deep Molten Coal Ash Corrosion of IN740-1 Alloy at 800 °C

After 168 h

The corrosion of the alloy is controlled by diffusion of the ions through the scale after forming a compact scale

Bode Plots for Deep Molten Coal Ash Corrosion of IN740-1 Alloy at 800 °C

Typical Potential Noise Signatures from Deep Molten Coal Ash Corrosion of IN740-1 Alloy at 800 °C

After 168 h

Typical Current Noise Signatures from Deep Molten Coal Ash Corrosion of IN740-1 Alloy at 800 °C

Typical Noise Impedance from Deep Molten Coal Ash Corrosion of IN740-1 Alloy at 800 °C

After 168 h

Noise Resistance for Deep Molten Coal Ash Corrosion of IN740-1 Alloy at 800 °C

	Exposure Time	Noise Resistance (R _n)
	(h)	$(k\Omega)$
Pit initiation	24	1.46
Pit propagation	72	30.13
Stable pit formation	168	112.183

Pitting Index for Deep Molten Coal Ash Corrosion of IN740-1 Alloy at 800 °C

PI = 0 , the individual current x_i show only small deviations from the mean value of current

PI = 1, $x_i >>$ than the mean value of current

Stern-Geary Linear Approximation

Rp = Resistance obtained from the LPR and EIS techniques

Rn = Resistance obtained from the EN

B = Stern-Geary constant

βa = Anodic Tafel constant

 $\beta c = Cathodic Tafel constant$

Icorr = Corrosion current density

Corrosion rate (mm y⁻¹) =
$$\frac{3.28M}{n\rho}$$
 i_{corr}

n = Number of electrons freed by the corrosion reaction

M = Atomic mass

Weight Loss Measurement

For thin coal ash film corrosion

For deep molten coal ash corrosion

Corrosion rate (mm y⁻¹) =
$$\frac{1}{0.274 \times \rho}$$

 W_b = Weight of test sample before test, g

 $\overline{W_a}$ = Weight of test sample after test, g

B = Weight loss of blank, g (the average weight loss from 3 unused and clean sample was used as the blank correction)

A = Surface area of sample, cm²

t = Exposure time, day

 ρ = Density of alloy

Weight Loss Rates for Deep Molten Coal Ash Corrosion and Thin Coal Ash film Corrosion of IN740-1 Alloy at 800 °C

Corroded Surfaces for Deep Molten Coal Ash Corrosion of IN740-1 Alloy at 800 °C

Oxide Layer Formation on Corroded Surfaces for Deep Molten Coal Ash Corrosion of IN740-1 Alloy at 800 °C

Oxides Formation on Corroded Surfaces for Deep Molten Coal Ash Corrosion of IN740-1 Alloy at 800 °C

Corroded Surfaces for Deep Molten Coal Ash Corrosion of IN740-1 Alloy at 800 °C

With Synthetic Flue Gas

After 1 weeks

After 2 weeks

Molten Alkali Iron Sulfate Formation During Deep Molten Coal Ash Corrosion of IN740-1 Alloy at 800 °C

Pits Formation on Corroded Surfaces for Deep Molten Coal Ash Corrosion of IN740-1 Alloy at 800 °C

After 1 week

Without Synthetic Flue Gas

1 um

After 2 weeks

With Synthetic Flue Gas

Corrosion Products in Coal Ash from Deep Molten Coal Ash Corrosion of IN740-1 Alloy at 800 °C

Corrosion Products in Coal Ash from Thin Coal Ash Film Corrosion of IN740-1 Alloy at 800 °C

After 2 weeks

After 3 weeks

After 4 weeks

1 mm

1 mm

Coal Ash Corrosion Mechanism

Initiation Stage

The transport of the oxygen to the alloy surface and the formation of an oxide scale

Propagation Stage

Formation of porous scale in molten salts and corrosion is controlled by soluble diffusion of the oxidant in the melt

Stabilization Stage

Corrosion is controlled by diffusion of the ions through the scale after forming a compact scale

Conclusions

- The preliminary results suggest that the developed high temperature corrosion sensor allows accurate analysis of the sample material via several electrochemical techniques.
- Electrochemical and weight loss measurements show that corrosion of IN740-1 alloy in synthesis coal ash mixture at 800 °C was due to localized or pitting corrosion behavior.
- Three different stages of deep molten coal ash corrosion of IN740-1 alloy in synthesis coal ash mixture at 800 °C have been proposed.

Self-Powered Wireless Communication

Commercially available hardware

- 1 Watt transmitter frequency-hopping, spread spectrum technology in the 902-928 MHz ISM band
- Preliminary testing of the thermoelectric generator (TEG) shows a 5 Watt output potential when contacting a surface temperature in the 300° C to 350° C range

Completed:

- Purchased off-the-shelf TEG and wireless transmitter & receiver
- Demonstrated bench scale feasibility of TEG

Next Steps:

- Profile TEG power vs. temperature range
- Demonstrate wireless transmission capability with simulated signal
- Finalize specifications of signal converter for corrosion sensor input
- Complete lab scale demonstration

Future Work

- Validate results with real-time USC boiler systems
- Extend test results to develop corrosion model for USC boiler systems
- Make alterations to sensor design to include power source and transmitter
- Test sensor reliability and sensitivity for in situ applications

Milestone Status Report

Milestone Status Report

Milestone Status Report

44		90 days?	Mon 11/28/11	Fri 3/30/12
45	Demonstrate the wireless communication system functionality in lab-scale tests	55 days?	Mon 11/28/11	Fri 2/10/12
46	Demonstrate the TEG functionality via lab-scale tests	44 days?	Tue 1/31/12	Fri 3/30/12
47	4.3 Demonstrate TEG and wireless communication system	1 day?	Sun 4/1/12	Sun 4/1/12
48	Demonstrate wireless/TEG functionality under USC operating conditions	1 day?	Sun 4/1/12	Sun 4/1/12
49	5.0 In-Situ Corrosion Monitoring Testing in Industrial USC Boiler Setting	391 days?	Mon 10/1/12	Mon 3/31/14
50	Determine reliability and precision of corrosion sensors operating in industrial USC boiler conditions	130 days?	Mon 10/1/12	Sun 3/31/13
51	Optimize sensor construction and corrosion model development	130 days?	Tue 10/1/13	Mon 3/31/14

Thank Ofou