Wireless Surface Acoustic Wave CO₂ Sensor for Carbon Storage Sites Monitoring

FE0002138

Yizhong Wang
University of Pittsburgh

U.S. Department of Energy

National Energy Technology Laboratory
Carbon Storage R&D Project Review Meeting
Developing the Technologies and Building the
Infrastructure for CO₂ Storage
August 21-23, 2012

Presentation Outline

- Technical Background
- Surface Acoustic Wave (SAW) Sensor Testing
- Carbon Nanotube (CNT) Polyimide (PI) composite performance characterization
- CNT- Polyethylenimine (PEI) composite performance characterization
- SAW CO₂ sensor characterization
- Wireless module characterization

Benefit to the Program

- Program goals being addressed.
 - Conduct field tests through 2030 to support the development of BPMs for site selection, characterization, site operations, and closure practices.
- Project benefits statement.
 - The research project is developing a wireless CO₂ sensing system monitoring CO₂ leakage around the injection wells and ensure timely notification to control center once leakage is detected. The technology, when successfully demonstrated, will provide an improvement over current CO₂ sensors in both wireless performance and power consumption. This technology contributes to the Carbon Storage Program's effort of ensuring 99 percent CO₂ storage permanence in the injection zone(s) (Goal).

Project Overview:

Goals and Objectives

- Describe the goals and objectives in the Statement of Project Objectives.
 - The research project aims to develop a wireless CO₂ sensor based on SAW technology and CNT-polymer composite for carbon storage sites monitoring.
 - The research project will develop a sensing system that can respond to CO₂ concentration change in the air in a timely manner and communicate wirelessly with a control center regarding the detection results.

NDIR CO₂ Sensor

CO₂ Absorption on Light with Particular Wavelength

Active Light Source Power Consumption

Chemical CO₂ Sensor

Balance Type CO₂ Mass Sensor

$$\Delta f = -C_f (f_0^2 / A) \Delta m$$

A Electrode Area

C_f Mass Sensitivity Constant

 f_0 Fundamental Frequency

Operated at 70℃

Chemical CO₂ Sensor

Capacitor Type CO₂ Sensor

70% Aminopropyltrimethoxysiloxane (AMO)

30% propy-Itrimethoxysilane (PTMS)

 $-NH_2+CO_2+H_2O \longleftrightarrow NH_4HCO_3$

Require 120kJ/mol Energy

Operated above 60℃

Chemical CO₂ Sensor

Resistance Type CO₂ Sensor

BaTiO₃-CuO

BaCO₃

Some Operated at elevated Temperature

Ag₂SO₄

Na₂CO₃

Surface Acoustic Wave (SAW) Sensor

 $\Delta \phi$ Phase Change

 $\Delta \alpha$ Attenuation Change

K² Electromechanical Coupling Coefficient

 $\sigma_{\scriptscriptstyle
m S}$ Film Sheet Conductivity

 C_s Capacitance per Length of Substrate

 C_m Mass Sensitivity Coefficient

 ρ_s Mass Per Unit Area

 f_0 Frequency of Operation

k Wave Number

K Fraction of Propagation Path Covered by Sensing Film

Common Used Piezoelectric Materials Properties

Substrate	Cut	Propagate	Wave	Coupling Coeff	Temperature	Transmission
		Direction	Speed(m/s)	K ² (%)	Coefficient (ppm/°C)	Loss(dB/cm)
Quartz	Y	X	3159	0.23	-22	0.82
	ST	X	3158	0.16	0	0.95
LiNbO ₃	Y	Z	3485	4.5	-85	0.31
	131°Y	X	4000	5.5	-74	0.26
	128° Y	X	4000	5.5	-72	
LiTaO ₃	Y	Z	3230	0.74	-37	0.35
	X	112° Y	3295	0.64	-18	

ST cut Quartz → Zero Temperature Coefficient, High Transmission Loss LiNbO₃ → Low Transmission Loss, High Temperature Coefficient

Temperature/Pressure SAW Mass Deposition Sensor Conductivity Change **Elasticity Change** Metal Oxide Heated Conductivity Change Polyner/Composite → Conductivity Change Sensing Cermics Film

CO₂ Sensing Film →

Conductivity Change .

Carbon Nanotube (CNT)
+
Polymer

High Surface Volume Ratio

CNT Conductor

Resistivity Change to CO₂ with help of Polymer

Polymer
Polyimide (PI)

Harsh Environment Capable

Perous Structure for CO₂ Sensing

 SAW Sensor Fabrication and Characterization through Flow Sensor Development

Purpose

Study the Piezoelectric Materials Properties

Investigate SAW Signal Characteristics

Study the Impact of Different Parameters

Extensional and Flexural Displacement

$$w_{1} = \frac{\tau \left(-X_{1}\right) X_{1}}{2\overline{c}_{11}A} = \frac{\tau \left(-X_{1}\right) X_{1}}{2\overline{c}_{11}h},$$

$$w_{2,1} = \frac{pX_{1}\left(-X_{1}\right) - 2X_{1}}{12\overline{c}_{11}I} = \frac{pX_{1}\left(-X_{1}\right) - 2X_{1}}{\overline{c}_{11}h^{3}},$$

$$w_{2} = \frac{pX_{1}^{2}\left(-X_{1}\right)}{24\overline{c}_{11}I} = \frac{pX_{1}^{2}\left(-X_{1}\right)}{2\overline{c}_{11}h^{3}}$$

$$w_{1} = w_{1} = w_{1} = w_{1} = w_{2} = w_{2}$$

$$w_{2} = w_{2} = w_{2} = w_{2}$$

$$w_{3} = w_{4} = 0.$$

Simulation and Calculation Results

Sensor and Setup

Phase Delay → 1 Deg per 11.8ml/min

Frequency——Changes fall in fabrication error range

- Fabricated SAW Sensor for Flow Rate Measurement
- Piezoelectric Materials Studied \(\square\)
- SAW signal Characterized
- Parameters Impact Studied \square

Fabricate and Characterize Nanocomposite

CNT Concentration for Percolation Threshold

Temperature

Hamidity – Can use Dessicant

Strain (deformation)

Resistance Measurement Device Fabrication

IDT-Regular Photolithography Process
50nm Cr layer deposited on Quartz
150 on Au layer sputtered on top

AZ4210 spun-coated and Patterned
Au/ Etching
Photoresist Removal and Wafer Cleaning

60 Pairs Fingers
5mic Length
5mic Length
44u Spacing
4.8mm Aperture

Nanocomposite Fabrication

swCNTs — Aldrich, 2g, St. Louis, MO., USA, 1-2nm OD., 5-30um L, >90wt% Polyimide — HD microsystem, 1 Gal., Parlin, NJ, USA

- CNT+Solvent
- Stir by Magnetic Stir Bar
- Ultrasonic until Uniform Texture
- Pour the mixture on IDT
- Baked at 350°C in oven for 30 min

Impedance Analysis

Threshold between 0.7% and 0.8%

Resistivity Temperature Coefficient

Resistivity Change with Strain

Resistivity Change with Strain

Resistivity Change with Strain for Test Sample without IDT

Resistivity Change with Strain for Test Sample with IDT

- Nanocomposite Fabricated \square
- Percolation Threshold Studied \/
- Temperature Impact Studied >
- Strain Impact Studied \square

Fabricate and Characterize CO₂ Sensor

Tetring System Construction

Co. Sensor Response Assessment

CN 7-PI composite CO₂ Response

Testing System Construction

ID 4.8cm
Tube 96cm
V 1.7L

12 min to flush the system with air 34 min to flush the system with CO_2

Controller

Testing System Improvement

Smaller Testing Chamber

2. Use Vacuum before every Flush and gas Concentration Change

Theoretical SAW Response

$$\frac{\Delta v}{v_0} \cong -\frac{\beta}{k} = -\frac{K^2}{2} \frac{(\sigma d)^2}{(\sigma d)^2 + v_0^2 (\varepsilon_0 + \varepsilon_1)^2}$$
 SAW Velocity Change

$$\frac{\alpha}{k} \cong \frac{K^2}{2} \frac{v_0(\varepsilon_0 + \varepsilon_1)\sigma d}{(\sigma d)^2 + v_0^2(\varepsilon_0 + \varepsilon_1)^2}$$

SAW Attenuation Change

SAW Frequency Change induced by Film Conductivity Change

Optimum CNT concentration = 1.166wt%

Estimated maximum frequency change 500Hz for a 52.63MHz System

Time (s)

Fabricate and Characterize CO₂ Sensor

Teting System Construction

Co. Sensor Response Assessment

CN 7-PI composite CO₂ Response

From Chemistry Point of View

• PI not ideal R_2 N R_3 R_1

Primary and Secondary Amines ———— Carbamates

Polyethylenimine (PEI)

Branched PEI

$$\begin{array}{c|c} & & & \\ &$$

0%, 1%, 5%, 10%, 20%, 50%, 100% CO₂ in the air

0.8% Frequency Change with 100% CO₂

SAW CO₂ sensor characterization

60.6MHz SAW by Lithography

SAW CO₂ sensor characterization

Basic SAW response without antenna

Testing setup for SAW sensor with antenna

Close look for different wireless working pattern

SAW CO₂ Sensor Development and Improvement

Ga Response Improvement through CNT-PEI

Sensor System Response

Wheless Module Characterization

Technical Status

- Focus the remaining slides, logically walking through the project. Focus on telling the story of your project and highlighting the key points as described in the Presentation Guidelines
- When providing graphs or a table of results from testing or systems analyses, also indicate the baseline or targets that need to be met in order to achieve the project and program goals.

Accomplishments to Date

- SAW sensor design, fabrication and testing process development completed
- Impact of temperature and strain on polymer composite study completed
- Polymer composite response to CO₂ investigation and improvement completed
- SAW CO₂ sensor performance assessment and analysis completed
- Wireless module development completed

Summary

- CNT-PEI composite is expected to produce ample room for detection improvement
- LiNbO₃ is the best choice as SAW substrate, not only for its potential in wireless sensing, but also for its highest yield in combination with current choice of polymer composite
- Wireless can be improved by increasing operation frequency and aligning antenna orientation
- Other parameters that can impact sensor
 performance, such as humidity and other gases like
 NH₃ and H₂, will be considered and evaluated

Appendix

Project Milestones

Milestone	Planned Completion Date	Actual Completion Date
Fundamental study of acoustic wave CO ₂ gas sensors, including design, fabrication, characterization of acoustic wave sensors	6/30/2010	6/30/2010
Fabrication and characterization of highly CO ₂ sensitive carbon nanotube-polymer thin coating layer	12/31/2010	12/31/2010
Design and fabrication of CO ₂ sensor testing module	6/30/2011	2/18/2011
Evaluation of acoustic wave gas sensors using CO ₂ selective and sensitive nanocomposite thin film interface	12/31/2011	12/31/2011
Fabrication and evaluation of passive wireless SAW CO ₂ sensors	6/30/2012	6/30/2012
Development of sensor prototype and monitoring system for field monitoring CO ₂ emission	12/31/2012	9/30/2012 (expected)

59

Organization Chart

- Department of Mechanical Engineering, University of Pittsburgh.
 - Qing-Ming Wang, PI
 - Minking K. Chyu, Co-PI
 - Yizhong Wang, Graduate Student
 - Lifeng Qin, Postdoctoral Researcher

Gantt Chart

	Year 1			Year 2			Year 3					
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Design, fabrication of acoustic wave				3						12		
sensors									oc		5. 04	
Development of CO ₂ sensitive												
CNTs/polymer nanocomposites thin												
films												
Annual Report 1		8 (8								8 (8)		
Design and fabrication of CO ₂ gas												
sensor testing module		5 83										
Fabrication and evaluation of bulk												
acoustic wave CO ₂ gas sensors												
Annual Report 2												
Fabrication and evaluation of passive												
wireless SAW CO ₂ sensors		8									3 5	
Development of sensor prototype and												
monitoring system for field												
monitoring CO ₂ emission at NETL												
Final Report												

Bibliography

Journal, multiple authors:

- Yizhong Wang, Zheng Li, Lifeng Qin, Minking K. Chyu and Qing-Ming Wang, 2012, Theoretical and Experimental Studies of a Surface Acoustic Wave Flow Sensor. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, v. 59, p. 481-489, available at: http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=06174194.
- Yizhong Wang, Ying Wang, Yongzheng Fang, Minking K. Chyu and Qing-Ming Wang, 2012, Fabrication and Characterization of Carbon Nanotube-Polyimide Compiste Based High Temperature Flexible Thin Film Piezoresistive Strain Sensor, Journal of Applied Physics, Accepted.

Publication:

Yizhong Wang, Zheng Li, Lifeng Qin, Minking K. Chyu and Qing-Ming Wang, 2011, Surface Acoustic Wave Flow Sensor, 2011 Joint Conference of the IEEE International Frequency Control and the European Frequency and Time Forum (FCS), p. 1-4, available at http://ieeexplore.ieee.org/xpls/abs-all.jsp?arnumber=5977735.