Simulation of Coupled Processes of Flow, Transport, and Storage of CO₂ in Saline Aquifers

DE-FE0000988

Philip H. Winterfeld Colorado School of Mines

U.S. Department of Energy

National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO₂ Storage August 21-23, 2012

Presentation Outline

- Benefit to the Program
- Project Overview: Goals and Objectives
- Technical Status
- Accomplishments to Date
- Summary
- Appendix

Benefit to the Program

- Advanced simulation tool for quantifying transport in geological formations during CO₂ sequestration that includes all mechanisms: convection, diffusion/dispersion, dissolution, and chemical reactions
- A simulator that can fully model these processes does not currently exist
- Simulator will contribute to our ability to predict CO₂ storage capacity in geologic formations, to within ±30 percent

Project Overview:

Goals and Objectives

Comprehensive reservoir simulator for investigation of CO₂ non-isothermal, multiphase flow and long-term storage in saline aquifers

- 1) Three-phase non-isothermal module for CO₂-brine flow
- 2) Coupling fluid flow and pressure with rock deformation
- 3) Geochemical reactions between injected CO₂ and aquifer rock
- 4) Modeling of density instability at CO₂-brine interface
- 5) Development of efficient parallel computing algorithms
- 6) Development of general fracture conceptual models
- 7) Verification and application using lab and field data

Technical Status

Three-phase non-isothermal module for CO₂-brine flow

- Developed TOUGH2 fluid property module for brine-CO₂ systems
- Called ECO2M, uses fluid property correlations from earlier ECO2N module, and distinguishes between gaseous and liquid CO₂ phases
- Wrote documentation (user's manual) for module, including test problems
- Transferred code for testing

ECO2M Phase Combinations

Figure 1. Possible fluid phase combinations in the system water-CO₂, and transitions between them in the P-T range of ECO2M. The phase designations are a - aqueous, 1 - liquid CO₂, g - gaseous CO₂. Separate liquid and gas phases of CO₂ exist only at subcritical conditions. Phase combinations are identified by a numerical index that ranges from 1 to 7.

2) Coupling fluid flow and pressure with rock deformation

- Literature review obtain correlations describing how rock properties change with effective stress, P, and T
- Derived mean stress equation for elastic porous media
- Incorporated above into existing fluid and heat flow simulator (starting point is TOUGH2-MP)
- Simulator validation using analytical solutions (Mandel-Cryer, one-dimensional consolidation) and problems from the literature (CO₂ injection and surface uplift in the water leg of a depleting gas field; simulation of deformation and fluid circulation in a volcanic caldera structure)

Mean Stress Equation

- Mean stress equation solved fully implicitly along with mass and energy balances

$$\frac{3(1-\nu)}{(1+\nu)}\nabla^2\tau_m = -\nabla\cdot\bar{F} + \frac{2(1-2\nu)}{(1+\nu)}(\alpha\nabla^2p + 3\beta K\nabla^2T)$$

One-Dimensional Consolidation

- Fluid-filled porous column
- Apply load to top, causing pressure to rise
- Fluid then drains out of top and pressure increase dissipates
- Simulation and analytical solution compared

3) Geochemical reactions between injected CO₂ and aquifer rock

- Literature survey: formation brine and aquifer rock chemical composition in CO₂ sequestration projects, geochemical reaction modeling of CO₂ sequestration
- Selected fully coupled approach for reactive solute transport model; TOUGHREACT as starting point
- Fully coupled approach: solve fluid flow, solute transport, and geochemical reactions simultaneously
- A batch reaction model is simulated and compared to TOUGHREACT simulator

Batch Reaction Model

- Mineral composition typically found in sedimentary basins
- 14 kinetic chemical reactions
- 12 primary chemical species (H₂O, H⁺, Ca²⁺, Na⁺, HCO₃⁻, Cl⁻, Mg²⁺, K⁺, Fe²⁺, SiO₂(aq), SO₄²⁻,AlO²⁻)
- 30 aqueous equilibrium reactions and secondary aqueous chemical species
- Good agreement with TOUGHREACT

4) Modeling of density instability at CO₂-brine interface

- Literature review: density driven convective flow, instability of systems with CO₂ dissolution, diffusion, and convection
- Convective mixing simulations based on laboratory experiments:
 - a) supercritical CO₂ circulated above brine-saturated packed sand in a pressure vessel
 - b) CO₂ dissolves into the upper part of the saturated sand
 - c) liquid phase density increases there, causing instability and setting off convective mixing
- Simulation of two-dimensional flow between parallel plates, permeability assigned randomly
- Calibrate the model to match simulation and experiment

Instability Simulation

- Hele-Shaw cell (slit flow)
- 100 × 100 grid, random permeability distribution
- Top initialized with CO₂
- Rest initialized with water
- At 500 hours the fingers are well established

5) Development of efficient parallel computing algorithms

- Studied code parallelization including grid block partitioning,
 Jacobian matrix assembly, and matrix solution
- Named modified TOUGH2-MP simulator (fluid and heat flow with rock deformation) TOUGH2-CSM
- Modified TOUGH2-CSM to allow it to handle larger simulations (O[10⁷-10⁸] grid blocks) efficiently
- Purchased cluster computer (16 nodes, 16 processors/node (Intel ® 5260 2.4 GHz), 24 GB memory/node) to run TOUGH2-CSM on

In Salah Gas Project

- Located in Algeria
- CO₂ injected into the water leg of a depleted gas field for storage
- Simulations based on Rutqvist et al. (2010)
- Simulated surface uplift;
 1000 x 1000 x 60 grid;
 horizontal well @ origin;
 (1/4) symmetry element

6) Development of general fracture conceptual models

- Literature survey on various fractured reservoir modeling methodologies (explicit implementation of discrete fractures, multiple interacting continuum (MINC))
- Derived mean stress equation for MINC media
- Variables associated with control volume: pressure, mass fractions, and temperature for each MINC block; mean stress common to all MINC blocks
- Incorporated MINC model into TOUGH2-CSM
- Validation using analytical solution for one-dimensional consolidation in double porosity deformable media

Idealized MINC Grid

Figure 10: MINC partitioning of an idealized fracture system [Pruess, 1983]

Accomplishments to Date

- Developed ECO2M fluid property module with aqueous, and gaseous and liquid CO₂ phases
- Wrote parallel, fully coupled simulator (TOUGH2-CSM) with fluid and heat flow, and geomechanical effects in fractured and porous media, using TOUGH2-MP as the starting point
- Wrote fully coupled geochemical reaction model using TOUGHREACT as the starting point
- Studied and simulated density-driven instability

Summary

- Project is on schedule and on budget as planned
- Simulator development is mostly completed
- Future work will emphasize verification and application using lab and field data, and transferring simulation technology to users

Appendix

Organization Chart

Colorado School of Mines

Jeffery Chen, Assistant Professor of Computer Science Philip Winterfeld, Research Associate Professor, Petroleum Eng. Yu-Shu Wu, Prof. and CMG Reservoir Modeling Chair, Pet. Eng. Xiaolong Yin, Assistant Professor, Petroleum Engineering Ronglei Zhang, Ph.D. Candidate, Petroleum Engineering

Computer Modeling

<u>Group</u>

(CMG)

Industry sponsor

<u>Lawrence Berkeley National Laboratory</u>

Karsten Pruess, Senior Scientist,
Hydrogeology (retired)
Curt Oldenburg, Staff Geological S

Curt Oldenburg, Staff Geological Scientist and Head Geologic Carbon Sequestration Program, Hydrogeology

Gantt Chart

Year		Year 1				Yea	ar 2			Yea	ar 3		Year 4			
Quarter	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
Task 2: Three-phase CO2 module																
Task 2.1 Implement fluid property correlations																
Task 2.2 Develop phase change capabilities																
Task 2.3 Finalize coding and documentation																
Task 3: Rock deformation module																
Task 3.1 Literature review																
Task 3.2 Formulation and coding																
Task 3.2 Program and initial verification																
Task 3.3 Implementation and verification																
Task 3.4 Integration and application																
Task 4: Identification and	Task 4: Identification and modeling of important geochemical reactions															
Task 4.1 Survey of important reactions																
Task 4.2 Study of kinetics in a fracture																
Task 4.3 Investigation of rxn in non aq. phase																
Task 4.4 Reaction module development																
Task 5: Characterization a	nd m	odel	ing (of dis	solut	ion-	drive	n ins	tabil	ity						
Task 5.1 Survey and analysis of existing data																
Task 5.2 Theoretical and numerical studies																
Task 5.3 Modeling of instability and integration																

Gantt Chart, Cont'd

Year		Year 1			Year 2				Year 3				Year 4			
Quarter	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
Task 6: Parallel computing scheme																
Task 6.1 Literature review																
Task 6.2 Grid partitioning																
Task 6.3 Grid block reordering																
Task 6.4 Jacobian matrix calculations																
Task 6.5 Parallel linear system solver																
Task 6.6 Implementation																
Task 6.7 Software test																
Task 6.8 Software release																
Task 7: Fracture models																
Task 7.1 Literature review																
Task 7.1 Conceptual model development																
Task 7.2 Formulation and coding																
Task 7.2 Programming and testing																
Task 7.3 Verification and improvement																
Task 7.4 Integration and application																
Task 8: Verification and Application																
Task 8.1 Against other simulators																
Task 8.2 Against lab data																
Task 8.3 Against field data																

Bibliography

- Pruess, K., 2011, Integrated Modeling of CO2 Storage and Leakage Scenarios Including Transitions between Super- and Subcritical Conditions, and Phase Change between Liquid and Gaseous CO2: Greenhouse Gases Science and Technology, v.1, p.237-247, available at: http://onlinelibrary.wiley.com.
- Winterfeld, P. H., Wu, Y.-S., 2011, A Novel Fully Coupled Thermal-Hydrologic-Mechanical Model for CO2 Sequestration in Brine Aquifers, submitted for publication in the International Journal of Rock Mechanics and Mining Sciences

Conference Papers

- Winterfeld, P. H., Wu, Y.-S., 2011, SPE 141514 Parallel Simulation of CO2 Sequestration with Rock Deformation in Saline Aquifers, 2011 SPE Reservoir Simulation Symposium held 21-23 February, 2011, in The Woodlands, TX.
- Winterfeld, P. H., Wu, Y.-S., 2011, Numerical Simulation of CO2 Sequestration in Saline Aquifers with Geomechanical Effects, 10th Annual Conference on Carbon Capture and Sequestration, May 2-5, 2011, in Pittsburgh, PA.
- Winterfeld, P. H., Wu, Y.-S., Pruess, K., Oldenburg, C., 2012, Development of Advanced Thermal-Hydrological-Mechanical Model for CO2 Storage in Porous and Fractured Saline Aquifers, TOUGH Symposium 2012.
- Zhang, R., Yin, X., Wu, Y.-S., Winterfeld, P. H., 2012, A Fully Coupled Model of Nonisothermal Multiphase Flow, Solute Transport and Reactive Chemistry in Porous Media, SPE Annual Technical Conference and Exhibition held in San Antonio, Texas, USA, 8-10 October 2012.
- Winterfeld, P. H., Wu, Y.-S., 2012, A Novel Fully Coupled Geomechanical Model for CO2 Sequestration in Fractured and Porous Brine Aquifers, XIX International Conference on Computational Methods in Water Resources (CMWR 2012).

