

A Decade of CCUS and Associated Research at the Weyburn Oilfield, Canada

Neil Wildgust, Chief Project Officer

August, 2012

US DOE Carbon Storage R&D Project Review Meeting

Petroleum Technology Research Centre

- □Non-Profit Research & Development
- □Collaborative partnership with Industry, Government and Research Organizations
- □ Committed to reducing environmental impacts of oil production
 - ☐ STEPS (EOR Centre of Excellence)
- □ Research associated with CO₂ management
 - □ IEAGHG Weyburn –Midale CO₂ Monitoring & Storage Project
 - □ Aquistore

AND STORAGE PROJECT

IEAGHG Weyburn-Midale CO₂ Monitoring & Storage Project (WMP) 2000 to 2012

Commercial EOR operations in Weyburn and Midale oilfields utilise anthropogenic CO₂

Over 20Mt of CO₂ injected and stored since 2000

WMP has used these sites to study technical aspects of CO₂ geological storage

Staged Study Areas:

CO2 MONITORING AND STORAGE PROJECT Research Centre

www.cenovus.com

Midale Field CO2-EOR

Best Practice Manual

Introduction

• Purpose, scope, context, background, ...

Characterization

- Regional geology
- Regional hydrogeology
- Containment characterization
- Geomechanical characterization
- Geochemical characterization

Performance predictions

- CO₂ migration
- Capacity and mass partitioning
- Containment

Geochemical monitoring

- Groundwater
- Soil gas
- Reservoir fluids
- Reservoir/caprock core

Geophysical monitoring

- Geophysical char. of rock-fluid system
- Feasibility studies
- Downhole monitoring methods
- 3D seismic methods

HM and performance validation

- Prediction/measurement comparison
- Revision of Geologic Models

Well integrity

- Integrity assessment
- Design considerations
- Remediation and conversion
- Abandonment considerations
- Integrity monitoring and field testing

Risk assessment

Community outreach

Revised Model

Was improved with:

- More detailed aquitard characterization
- 2. Larger area
- 3. More accurate subcrop mapping
- Increased well density (800 in area)

Migration scenarios (Cavanagh, 2011)

Slightly leaky wells: 1 micron

Containment: Jurassic aquifer

Newcastle: ---

Mannville: ---

Jurassic: 1.4 Mt

Newcastle ---Mannville ---

Jurassic 20 largest pools, 1.3 Mt

• Jurassic: small pools, migrates NE

Newcastle

Natural Analogue Study

3D Time-Lapse Seismic: CO₂ Distribution

Monitoring regional subsurface distribution of CO_2 :

- •Verifying storage conformance
- •A primary input for updating reservoir models
- •Optimal resolving capability
- •Sensitive to low CO₂ saturations
- •Data repeatability is fundamental

3D Time-Lapse Seismic: Pressure vs. CO₂ Saturation

Inversion of prestack seismic data:

- Semi-quantitative CO₂ saturation and P changes
- Results are model-based
- •Characterization of reservoir rock physics is essential
- Monitoring survey design is important as "long offset" data are required

Research Centre

Seal Integrity: Fracture Mapping

Seismic anisotropy as a proxy for vertical fracturing:

- Means of identifying potential fracture zones regionally
- Scale of individual fractures and hydraulic conductivity is not resolved
- "Fracture zones" may warrant subsequent attention

Passive Seismic Monitoring

Documentation of time, magnitude and location of seismicity:

- •Public assurance
- •Integrity of the sealing units
- •Injection control

Soil gas monitoring: Overview

Research Providers

- ✓ Dave Jones et al. (BGS)
- ✓ Dave Risk et al. (StFX)

Measurements

- \checkmark CO₂, O₂, N₂ conc.
- \checkmark CH₄, C₂H₆, C₂H₄ conc.
- ✓ Rn, He conc.
- ✓ CO₂ flux
- ✓ C isotopes

Methods

- ✓ Single-depth (BGS), depth-profile (StFX) CO₂
- √ CO₂ flux (BGS)
- ✓ Continuous CO₂ (BGS), CO₂ flux (StFX)
- \checkmark $\delta^{13}CO_{2,}$, $^{14}CO_{2}$

Soil Gas Monitoring Data

Carbon Isotopes

Scatter plot of ¹³C on CO₂ with ¹⁴C on CO₂
- Control, Investigation (Event 1 and Event 2)
and Injection Gas samples

Well Integrity: Field Testing Program

Modified coring tool:

→ Direct confirmation of cement

Containment Risk Profile

No further work would be required to demonstrate containment acceptability.

Identifying Biosphere Assets Most At Risk From Pathways

Initiating Events - Risk to Assets

Thanks for your attention

