A Decade of CCUS and Associated Research at the Weyburn Oilfield, Canada Neil Wildgust, Chief Project Officer August, 2012 US DOE Carbon Storage R&D Project Review Meeting # Petroleum Technology Research Centre - □Non-Profit Research & Development - □Collaborative partnership with Industry, Government and Research Organizations - □ Committed to reducing environmental impacts of oil production - ☐ STEPS (EOR Centre of Excellence) - □ Research associated with CO₂ management - □ IEAGHG Weyburn –Midale CO₂ Monitoring & Storage Project - □ Aquistore AND STORAGE PROJECT # IEAGHG Weyburn-Midale CO₂ Monitoring & Storage Project (WMP) 2000 to 2012 Commercial EOR operations in Weyburn and Midale oilfields utilise anthropogenic CO₂ Over 20Mt of CO₂ injected and stored since 2000 WMP has used these sites to study technical aspects of CO₂ geological storage ### Staged Study Areas: CO2 MONITORING AND STORAGE PROJECT Research Centre www.cenovus.com ### Midale Field CO2-EOR ### **Best Practice Manual** #### Introduction • Purpose, scope, context, background, ... #### **Characterization** - Regional geology - Regional hydrogeology - Containment characterization - Geomechanical characterization - Geochemical characterization #### **Performance predictions** - CO₂ migration - Capacity and mass partitioning - Containment #### **Geochemical monitoring** - Groundwater - Soil gas - Reservoir fluids - Reservoir/caprock core #### **Geophysical monitoring** - Geophysical char. of rock-fluid system - Feasibility studies - Downhole monitoring methods - 3D seismic methods #### **HM** and performance validation - Prediction/measurement comparison - Revision of Geologic Models #### Well integrity - Integrity assessment - Design considerations - Remediation and conversion - Abandonment considerations - Integrity monitoring and field testing #### Risk assessment #### **Community outreach** ### **Revised Model** ### Was improved with: - More detailed aquitard characterization - 2. Larger area - 3. More accurate subcrop mapping - Increased well density (800 in area) ### Migration scenarios (Cavanagh, 2011) Slightly leaky wells: 1 micron Containment: Jurassic aquifer Newcastle: --- Mannville: --- Jurassic: 1.4 Mt Newcastle ---Mannville --- Jurassic 20 largest pools, 1.3 Mt • Jurassic: small pools, migrates NE Newcastle # **Natural Analogue Study** ### 3D Time-Lapse Seismic: CO₂ Distribution Monitoring regional subsurface distribution of CO_2 : - •Verifying storage conformance - •A primary input for updating reservoir models - •Optimal resolving capability - •Sensitive to low CO₂ saturations - •Data repeatability is fundamental ### 3D Time-Lapse Seismic: Pressure vs. CO₂ Saturation Inversion of prestack seismic data: - Semi-quantitative CO₂ saturation and P changes - Results are model-based - •Characterization of reservoir rock physics is essential - Monitoring survey design is important as "long offset" data are required Research Centre # **Seal Integrity: Fracture Mapping** Seismic anisotropy as a proxy for vertical fracturing: - Means of identifying potential fracture zones regionally - Scale of individual fractures and hydraulic conductivity is not resolved - "Fracture zones" may warrant subsequent attention ### **Passive Seismic Monitoring** Documentation of time, magnitude and location of seismicity: - •Public assurance - •Integrity of the sealing units - •Injection control ### Soil gas monitoring: Overview #### **Research Providers** - ✓ Dave Jones et al. (BGS) - ✓ Dave Risk et al. (StFX) #### **Measurements** - \checkmark CO₂, O₂, N₂ conc. - \checkmark CH₄, C₂H₆, C₂H₄ conc. - ✓ Rn, He conc. - ✓ CO₂ flux - ✓ C isotopes #### **Methods** - ✓ Single-depth (BGS), depth-profile (StFX) CO₂ - √ CO₂ flux (BGS) - ✓ Continuous CO₂ (BGS), CO₂ flux (StFX) - \checkmark $\delta^{13}CO_{2,}$, $^{14}CO_{2}$ # **Soil Gas Monitoring Data** ### **Carbon Isotopes** Scatter plot of ¹³C on CO₂ with ¹⁴C on CO₂ - Control, Investigation (Event 1 and Event 2) and Injection Gas samples # Well Integrity: Field Testing Program ### **Modified coring tool:** → Direct confirmation of cement ### **Containment Risk Profile** No further work would be required to demonstrate containment acceptability. # Identifying Biosphere Assets Most At Risk From Pathways **Initiating Events - Risk to Assets** # Thanks for your attention