Development of a 1,000 Level 3C Fiber Optic Borehole Seismic Receiver Array Applied to Carbon Sequestration

DE-FE0004522

Björn N.P. Paulsson Paulsson, Inc.

U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO₂ Storage

August 21-23, 2012

Project Overview: Goals and Objectives

- Goals: Design, build, and test a high performance borehole seismic receiver system to allow cost effective geologic Carbon Capture and Storage (CCS)
- Objectives: A: Develop technology to allow deployment of a 1,000 level drill pipe deployed 3C Fiber Optic Geophone (FOG) receiver array for deep boreholes. B: Build a 150 level 3C 15,000 ft long prototype system. Test the prototype system, and conduct a borehole seismic survey at a Carbon Capture and Storage site with the fiber optic borehole seismic prototype system

Micro Seismic – a closer look!

Examples of Fault Imaging using Borehole Seismology

SAFOD Survey Site – Parkfield, California

Zoback (2006)

Alden (2009)

San Andreas Fault Survey Site – Parkfield, California

A "Zero Offset" Micro Seismic Event Recorded on a Paulsson 3rd Generation Borehole Seismic Array

•P and S Wave Velocity Inversions using Micro-seismic Data: •This is only possible with an Ultra Long Borehole Seismic Array

Micro-Seismic Source Locations (Top View). Data from the 3rd Gen Paulsson Borehole Seismic Array

Micro-Seismic Source Locations (3D View) 80 km³ monitored Red: pushing first break

A Micro-Seismic Event (5/1/2005 19:27)

1000-

Micro-Seismic Source Locations

Micro-Seismic Source Locations

A Micro-Seismic Event (5/4/2005 9:23)

1000

Micro-Seismic Source Locations

Micro-Seismic Source Locations

Frio CO2 Site, VSP Deconvolved + Upgoing P Waves Using Paulsson 3rd Generation Borehole Seismic Array

Frio VSP: P & S Velocity Models Using Paulsson's 3rd Generation Array

© 2012 Paulsson, Inc. (PI)

He & Paulsson, 2011

Generalized Interferometric Migration (GIM) of Side Reflections in VSP Data

Paulsson 3rd Generation Borehole Seismic Data Hodograms to Determine Vector of Reflection

S4

S5

S6

VSP Generalized Interferometric Migration (MIG) of a Salt Flank (red) & Faults (yellow)

Frio CO2 Site: Surface Seismic Image with VSP mapped Salt Flank location

© 2012 Paulsson, Inc. (PI)

Frio Well Ties: Compare Fault image from well log geology and from VSP imaging

Paulsson 3rd Generation Borehole Seismic arrays used for CO2 Time Lapse Monitoring Surveys

Depth Amplitude Maps showing the CO2 Injection

Accomplishments to Date

- Developed an Ultra Sensitive Fiber Optic Geophone
- Tested the Fiber Optic Geophone at High Temperature at large Range of Frequencies and Loads
- Developed a Facility to Manufacture High Performance
 Fiber Optic Geophone (FOG's) Arrays
- Designed and built a 30,000 psi capable 3C geophone pod for the Fiber Optic Geophones
- Developed a Deployment System strong enough to deploy a 1,000 level 3C borehole seismic arrays in vertical and horizontal boreholes.
- Manufactured components for a five level FOG array

1. Fiber Optic Sensor Development

2. Deployment System Development

The Clean Room for the Manufacturing of the 300°C Fiber Optic Borehole Geophones

The 300°C Dynamic Test Station for the 300°C Fiber Optic Borehole Geophones

Dynamic Test Facility

Dynamic Test Station Noise Improvements: April – August 2012

Noise Floor has been improved by a factor > 100

Paulsson Fiber Optic Geophone (PFOG) Improved Sensor's Sensitivity > 4x in V2 vs. V1

Both sensors being driven @ 10mG and 200 Hz

- Great Improvements in sensitivity in V2 (> 4x Improvement!) compared with V1.
- Sensor will be better isolated in a down-hole environment where the temperature will also be stable

Fiber Optic Geophones and Interrogator Noise Floor Sensor's Sensitivity and noise floor improvement

- Great Improvements in noise floor in V2 compared to V1
- As expected, we still experience higher environmental noises in our lab at low frequencies.
- Sensor will be better isolated in a down-hole environment where the temperature will also be stable
- © Vare energy of the second fillent, we can reduce the noise floor to < 10 nG for the whole band in the near future

THE PAULSSON FIBER OPTIC GEOPHONE VS. OTHER SENSORS @ 25°C

All Sensors - Frequency Response (10 Hz → 400 Hz) using a 600 µG Acceleration @ 25°C

THE PAULSSON FIBER OPTIC GEOPHONE VS. OTHER SENSORS @ 200°C

All Sensors - Frequency Response (10 Hz → 400 Hz) using a 600 µG Acceleration @ 200°C

High Precision Low Frequency Vibration System @ Low Amplitude

PFOG Performance Test at Frequencies < 1Hz

- Single PFOG sensor modulated at 0.03 Hz (33 seconds period)
- The Actuator is controlled by a PC at all frequencies (from <1 Hz to higher frequencies)

- 3 PFOGs are mounted axially to motion and modulated at 0.03 Hz
- The motion is controlled by a PC at all frequencies (from <1 Hz to higher frequencies)

FFT Maximum Peak Results (ZOOM)

PFOG Test @ 0.03 – 1 Hz (33 – 1 sec period)

Seismic Traces from Tap Test

Simultaneous Acquisition of all sensors; Band Pass Filter: 5 – 2,500 Hz

© 2012 Paulsson, Inc. (PI)

Conclusions

- **1. Fiber-Optic Geophone's design is successful**
 - a. Flat frequency response over a large frequency range
 - **b. Low Frequency performance**
 - c. Very high sensitivity
 - d. High Signal to Noise ratio
- 2. Outstanding Issues
 - a. Resonances in the test setup
 - **b.** Facility's environmental noise
 - c. Interrogation system tuning

The OpticSeis[™] 3C Pod For The Fiber Optic Geophone

1. Fiber Optic Sensor Development

2. Deployment System Development

Drill Pipe Based Borehole Seismic Deployment System

The Borehole Seismic Deployment System

Drill Pipe Based Deployment System

Pipe Strength: 140,000 lbs (verified July 25, 2011) Depth Capability: 30,000 ft Pressure Rating: 30,000 psi Clamping Actuators: 572°F (300°C) Temperature for Optical System: 572°F (300°C) Optical 3C Levels: 1,000 Deployable in both Vertical and Horizontal wells

Geophone Pod Housing and the Fiber Optic Pod Geophone pod

Casing

Casing

Destructive Testing of Tool Joints

Test of Tool Joints for Seismic Array on Nov. 22, 2010 Measured Strength: 210,000 lbs. Failed at 238,000 lbs.

Destructive Testing of Deployment drill pipe

Deployment Drill Pipe During Manufacturing

15,000 ft of Deployment Drill Pipe

Destructive Test of Geophone Pod Housing

Destructive Test of Geophone Pod HousingJuly 30, 20124 min. 27 sec.

7-30-12

Paulsson Project Summary

- Fiber Optic Geophones (FOG's) are more sensitive than regular geophones
- FOG's can operate at high temperature
- FOG's have a very large band width: 0.03 Hz 4kHz
- Lessons Learned:
 - Require a high quality measurement and calibration system
 - Manufacturing is expensive
 - Manufacturing takes a long time and must be carefully tracked
- Currently Building a Five Level 3C Array
- Plan to test Five level array in September 2012
- Complete a 150 level 3C FOG array in 2013

Thank you!

www.paulsson.com

© 2012 Paulsson, Inc. (PI)

Appendix

These slides will not be discussed during the presentation, but are mandatory

Project Team and Project Organization

- Project Team
 - Paulsson, Inc.
 - Principal Investigator, System design, Fiber Optic Sensor Design and Manufacturer, Design geophone pods
 - Fiber Optic Interrogator Manufacturer
 - System noise abatement, Interrogator design & manufac.
 - Drill Pipe Manufacturer
 - Design tool joints, manufacture drill pipe and related components
 - Machine Shops
 - Manufacture geophone pods, geophone pod housings and other components

Paulsson Organization Chart

Paulsson Fiber Optic Geophone Project Gantt Chart

Timeline		St a Fri 10/1/	Ist Quarter 3rd Quarter	Ist Quarter	Today	1st Quarter	J ^{3rd Quarter}	1st Quarter Finish Tue 12/31/13
		M Ta →	Task Name	2010 Qtr 1, 2011 Sep Nov Jan Mar	Qtr 3, 2011 May Jul Sep	Qtr 1, 2012 Qtr 3 Nov Jan Mar May Jul	, 2012 Qtr 1, 2013 Sep Nov Jan Mar M	Qtr 3, 2013 Qtr 1
Gantt Chart	1	*	Development and Test of 1000-level 3C Fiber Optic Borehole Seismic Receiver Array applied to Carbon Sequestration	V				<u>_</u>
	2	*	Specification Tasks					
	8	*	🗉 Design Tasks	Q				
	26	*	Prototype Manufacturing					
	41	*	* Environmental and Bench Test of Prototypes			V		
	57	*	* Geophysical Test of Prototypes					
	61	*	* Test Evaluation and Report of Prototypes					
	66	*	* Manufacturing of the 150 level 3C Demonstration system				Q	
	82	*	Field Test of Completed 150-level System and analysis of the data Tasks					
	87	*	Survey processing, instrument evaluation and Final Report					 1

Bibliography

List peer reviewed publications generated from project per the format of the examples below

• First Publication Expected in 2013

