Web-based CO₂ Subsurface Modeling

Geologic Sequestration Training and Research

Project Number DE-FE0002069 Christopher Paolini San Diego State University

U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO₂ Storage August 21-23, 2012

Presentation Outline

- Project benefits and goals.
- Web interface for simulating water-rock interaction.
- Development of, and experience teaching, a new Carbon Capture and Sequestration course at San Diego State University.
- Some noteworthy results of student research and training in CCS oriented geochemistry.
- Status of active student geochemical and geomechancal modeling projects.
- Project accomplishments and summary.

Benefit to the Program

- **Overall program goal:** initiate geologic sequestration training and research at San Diego State University (SDSU)
 - Develop a Rich Internet Application (RIA) interface to a baseline water-rock interaction code developed by Sienna Geodynamics and donated to SDSU to introduce students to CCS.
 - Develop a new cross-disciplinary graduate level class in CCS that uses the RIA with data from existing test sites.
 - Extend baseline code with student developed heat-transfer, poroelastic, and parallel solute mass-transfer modules.
- Project benefits: The RIA and extended water-rock interaction code developed through this project directly addresses the need for development of models that include full coupling of geochemical processes (subsurface chemical reactions among CO₂, groundwater/brine, and rock) and geomechanical processes, as specified in the original solicitation, and has lead to an improved ability to numerically model sub-surface CO₂. This technology contributes to the Carbon Storage Program's effort to develop technologies that will support industries' ability to predict CO₂ storage capacity in geologic formations to within ±30 percent. (Goal).

Project Overview: Goals and Objectives

- Statement of Project Objectives (SOPO) Goal #1: create a Web-based simulator with comprehensive chemical and physical numerical processes relevant for modeling CO₂ sequestration scenarios. Success criteria: goal met (Y/N)
- SOPO Goal #2: use developed Web-based simulator as part of a new course on CO₂ sequestration and modeling at San Diego State University (SDSU). Goal met (Y/N)

SOPO goals 1 and 2 support the Carbon Storage Program major goal of developing technologies that will support industries' ability to predict CO_2 storage capacity in geologic formations to within ±30 percent

- **SOPO Goal #3:** provide an opportunity at SDSU to further develop existing industrysupported multidisciplinary applied computational science program. Goal met (Y/N)
- SOPO Goal #4: provide industry with graduates trained in CCS simulation.
 Success criteria: internships and placement of students in CCS programs

SOPO goals 3 and 4 support the Carbon Storage Program major goals of providing the industry with people who can (1) develop technologies to demonstrate that 99 percent of injected CO_2 remains in the injection zones and (2) conduct field tests through 2030 to support the development of BPMs for site selection, characterization, site operations, and closure practices.

SOPO Goal #1: RIA for Simulating Water-Rock Interaction

- Impetus: steep learning curve for geology and chemistry undergraduates in using command-line, Unix based textual tools such as TOUGHREACT, EQ3/6, and EQ3NR.
- Student experiences with TOUGHREACT: difficult to understand and configure multiple input files, difficulty with post-processing and result visualization (typically with MATLAB).

🖗 ion.sdsu.edu - PuTTY			× 📄	θ					prob	lems — v	im — 14	6×40				
1m8368345098320641493	aim86328424508195935556.adb	aim8982803809581702497.adb		Aque	eous conce	entrati	ons vs. grid	d blocks at	specified	times li	ne 2237-					
im8368345098320641493.sdb	mim86328638501481456559	ri=8993319703755665997	lie lie	it:												
im83712342006593281236.sdb	sim86328638501481456559.sdb	sim8983319703755665997.sdb		Aqueous speci	ies: Conce	en. in	nol/l									
m92727271522994269092	aim95200105622004952059	atm2024615502742005145		BLES =X.			P(bar) .	50.	s1.	T(C).	pH.	1.2.	h.,	.fe+2	.sio2(ap)	.hce3-
im83727271532994268092.adb	sim86399106678994862068.sdb	sim8984615503742005145.sdb		DLES =X, T= "∂.000000€4	+88 yr" F	Z, F=POINT	P(bar) ,	59,	51,	r(c),	pn,	h20	,n+	,10+2	,5102(aq)	,ncos-
11163727271332994268092.30D	51m86399106678994862068.3db	S100984615505742005145.5db		5.000 0.	.500 -0						10.5551	0.5458E+02		0.9832E-10	0.1617E-04	0.1038E
					.500 -0	0.500	0.2000E+01 0 0.2000F+01 0	0.0000E+08 0		60.000 50.000	10.5551	0.5458E+02	0.3999E-10		0.1617E-04 0.1617E-04	0.1038E
m83741581945739657763.sdb	sim86403927608827713830.sdb	sim898692160722126288.sdb					0.2000E+01 0 0.2000E+01 0								0.1617E-04 0.1617E-04	
m83759027882038835906.sdb				45.000 0.	.500 -0	0.500	0.2000E+01 0	0.00002+08 0	0.10002+01	60.000	10.5551	0.5458E+02			0.1617E-04	
	sim86418219728453500530.sdb	sim8991666032534158344.sdb			500 -0		0.2800E+01 0			60.000		0.5458E+02			0.1617E-04	
m83777815380784581352.sdb							0.2000E+01 0 0.2000E+01 0			60.000					0.1617E-04 0.1617E-04	
	sim86438162157898211764.sdb	sim8995581787147718037.sdb		85.000 0.	.500 -6	8.500	0.2000E+01 0	0.0000E+08 0	0.1000E+01	60.000	10.5551	0.5458E+02	0.39998-10	0.9832E-10	0.1617E-04	0.1038
n8378729555426248639. #db							0.2000E+01 0	8.0008E+08 0	0.1000E+01	60.088	10.5551	0.5458E+02	0.3999E-10	0.9832E-10	0.1617E-04	0.1038
	sim86453478667881692900.sdb		ZONE	T= "0.134479E4 5.000 0.		F=POINT	0.34865+82 0	00005-00 0	10005+01	59.329	6 0687	0.54685+03	0.15745-86	8-15755-86	0.43516-03	0.2866
	cd sim83802972688575508190						0.3406E+02 0								0.4389E-03	
	im83802972688575508190> 1s				.500 -0		0.3406E+02 0			59.726			0.4484E-10			
	sim83802972688575508190, sdb	sim.sdb			.500 -0		0.3406E+02 0 0.3406E+02 0								0.4391E-03 0.4391E-03	
le.ps					.500 -0		0.3406E+02 0			59,726		0.5466E+02				0.1840
uplot1D.macro	sim83802972688575508190.sdb.e			65.000 0.	.500 -6		0.3406E+02 0			59.726						0.1840
	sim83802972688575508190.sdb.	out view_io_resp					0.3406E+02 0								0.4391E-03 0.4391E-03	
m83802972688575508190.pid							0.34062+02 0					0.5466E+02				
				T= "0.271371E+	+88 yr" F	F=POINT										
	cd sim86438162157898211764						0.6718E+02 0			58.671				0.3154E-06		
[ion]/var/preserve/sym8/s	im86438162157898211764> 1s				.500 -0		0.6718E+02 0 0.6718E+02 0			59.377			0.4579E-08 0.7893E-10	0.4638E-08 0.1374E-09	0.4362E-03 0.4369E-03	
e.ps	sim86438162157898211764.sdb	sim.sdb		35.000 0.	.500 -0	8.508	0.6718E+02 0	0.0008E+08 0	0.1000E+01	59.442	10.5527	0.5475E+02	0.4033E-10	0.9886E-10	0.4369E-03	0.1844
plot1D.macro	sim86438162157898211764.sdb.						0.6718E+02 0								0.4369E-03	
	sim86438162157898211764.sdb.				.500 -0		0.6718E+02 0 0.6718E+02 0			59.442			0.4012E-10 0.4012E-10			0.1842
n86438162157898211764.pid		AC ATCM TO TESD		75.000 0.	500 -0	8.500	0.6718E+02 0	0.0000E+08 0	0.1000E+01	59.442	10.5550	0.5475E+02	0.4012E-10	0.9864E-10	0.4369E-03	0.1842
				85.000 0.	.500 -0	0.500	0.6718E+02 0	0.0000E+08 0	0.1000E+01	59.442	10.5550	0.5475E+02	0.4012E-10	0.9864E-10	0.4369E-03	0.10428
<pre>[ion]/var/preserve/sym8/s</pre>	1m86438162157898211764>		·													

- Idea: develop intuitive Web application that can function as a wrapper around an existing water-rock interaction code that geology and chemistry students, with little or no Unix/Linux skills, can use to model and simulate typical CCS scenarios.
- Selected water-rock interaction code was *Sim.8* from Sienna Geodynamics & Consulting, Inc., through partnership with SDSU.

SOPO Goal #1: RIA for Simulating Water-Rock Interaction

Upload .sdo filo Desktop Minerals	sienna geodyn ERGY Google Calendar × ← → C ⓒ co2seq.sds	M Gmail - Inbox (1051) 🗙	CO STATE Sym.C ITY n and Reactive-Transport Simulation	← → C (S co2seq.sdsu Google ∞ www.engineering	edu .sd □ co2seq.sdsu.edu	mics & 🗿 San D Unive	☆ W < Yolume State Daem >> Cother bookmark
sim824725883280969 sim824725883280969 sim846471881924029 sim839362937759432 sim839362937759432 sim85156353905223	Upload .sab file Desktop Minerals Kinet	ienna geodynamics Gene ics Equilibrium Solutes (nineral Information. Double dick a mineral Carbonates C Quartz	e Warner Cable Volume State Daem S & SAN DIEGO STATE Sym. ral Water-rock Interaction and Reactive-Transport Sim Logged in as user paoli Control Composition Domain Constants C to add to or remove from the Selected Minerals list. Minerals in th Sulfates Oxides Clays Mineral information: Minerals name: k-feldspar Molecular formula: OgAIStgK Molar mass: 278.33154 Mass density: 2.557 Molar density: 0.009185 Nucleation Threshold: 1.1 Solid habit: framework Solid type: feldspar Solid shape: sphere	Upload 300 510 Single click & Kinetic equation to select the selected kinetic equation list. Available slow reactions: rf.gc01 glass-k chalcedony opal-a calcite-mg.118 smectite-gc01			Logged in as user paolini Logent ion Domain Constants Calculation Results careadion to use. Double dick a kinetic equation to remove from Kinetic reaction information: Reaction: $CO_3^{-+} + Ca^{++} > CO_3Ca$ Species: $ca^{++} co^{3} mg^{++} CO3Mg0.118Ca0.882$ In $K_{eq}(T) = -8.3984+0.0005706T-0.00018829T^2+1.6218e$ OGT ³ -1.0204e-08T ⁴ +3.8654e-11T ⁵ -7.9685e-14T ⁶ +6.639e 1777 Arrhenius Equation: $k = \alpha A e^{(E_g/RT)}$ k = 2e-07 * 1.79127e-0.5 e^{(25790/RT)} 1) Alternate arrhenius equation. 2) Polynomial function. 3) Perez-Boles rate model
to the furth	jarosite kieserite hematite-o2g goethite hematite hematite pyrophyllite	•	-			o2seq.s imc.sds	dsu.edu u.edu San Diego S

SOPO Goal #1: RIA for Simulating Water-Rock Interaction

		Equilibrium (relatively fast	t) reactions,
✓ In Google Calendar × M Gmail - Inbox (1051) × www.en ← → C © co2seq.sdsu.edu	ngineering.sdsu × 🗅 co2seq.sdsu.edu × 🔄	solute specification, simul	lation control
Google mowww.engineering.sd C co2seq.sdsu.edu @ Time Warner		contro opecification, entra	
Sicenna geodynamics & Control Single did. an Equilibrium reaction to display the information. Double did. an Equilibrium reaction to display the information. Double did. an Equilibrium reaction to display the information. Double did. an Equilibrium reaction to display the information. Double did. an Equilibrium reaction to display the information. Double did. an Equilibrium reaction to display the information. Double did. an Equilibrium reaction to display the information. Double did. an Equilibrium reactions: Equilibrium reactions: Selected Equilibrium reactions: Equilibrium reactions: Equilibrium reactions: Co2(q) oh- co2(g) hematite-ut01 hcl hcl hcl hcl hcl Google Calendar M Gmail - Inbox (1051)	SAN DIEGO STATE Sym.C r-rock Interaction and Reactive-Transport Simulation Logged in as user paolini Logout Composition Domain Constants Calculation Results n reaction to add to or remove from the Selected Equilibrium list. quilibrium reaction information: eaction: hco3- <=> co3 + h+ pecies: hco3- co3 h+ Keq(T) = 10.6241-0.015517T+0.000174903T ² -1.22625e-06T ³ +6.932 IT ⁴ 2.51366e-11T ⁵ +5.07759e-14T ⁶ -4.21787e-17T7 www.engineening.sdsu co2req.sdsu.edu x x x x x x x x x x x x x x x x x x x	C © co2seq.sdsu.edu Google www.engineering.sd C co2seq.sdsu.edu © Time Warner Cable Volume Sta San Diego Sta UNIVERSITY General Water-rock Interaction and Re	ATE Sym.C active-Transport Simulation Igged in as user paolini Legout
osipion in a		http://co2seq.sds http://simc.sdsu.e	

SOPO Goal #1: RIA for Simulating Water-Rock Interaction

• Oral number labor (BD) • Oral pediatorial • Oral pediatorial • Oral pediatorial • Oral pediatorial • Oral number distribution • Oral num	pere per pe	-	-			-		• X	Injectant and formation water
Concertation Units: Fixed or working Vater Vater Vater Vater <t< td=""><td>🛐 Google Calendar 🛛 🗙 M Gmail - Inbox (1051) 🗙</td><td></td><td>engineering.sds</td><td>u ×) 🗅</td><td>co2seq.sdsu.e</td><td>edu ×</td><td>¢</td><td></td><td></td></t<>	🛐 Google Calendar 🛛 🗙 M Gmail - Inbox (1051) 🗙		engineering.sds	u ×) 🗅	co2seq.sdsu.e	edu ×	¢		
Since age of ymail Control (100) Control (100) <thcontrol (1<="" td=""><td>← → C (S co2seq.sdsu.edu</td><td></td><td></td><td></td><td></td><td></td><td>*</td><td>w 🔍</td><td>Configuration, lithology configuration</td></thcontrol>	← → C (S co2seq.sdsu.edu						*	w 🔍	Configuration, lithology configuration
Signal geodynamics & I Google (addedf M Gmail-Jabox (003) W Ware Updag: 700 General Will C C22eq.453.ucdu The Ware Cathop State Dam. No the bootnusts Updag: 700 General Will C C22eq.453.ucdu The Ware Cathop State Dam. No the bootnusts Updag: 700 General Water Cotting State Dam. Since a geodynamics & Since a geodynamic & Since a geodynamic &	🗀 Google 🚥 www.engineering.sd 🗋 co2seq.sdsu.edu 🧶	ime Warn	er Cable 📄	Volume Sta	ate Daem	»	📋 Other bo	okmarks	
Sutting geolynamics in the geolynamics				produces (200	V				
Upgate 3.00 Concentration: Units: Fixed or evolving Value 2 Solutes parts: 1 0.000005 Mol + Evolving + Solutes parts: 1 0.00005 Mol + Evolving + Value 1 0.00005 Mol + Evolving + Solutes parts: 1 0.00005 Mol + Evolving + Solutes parts: 1 0.000005 Mol + Evolving + Solutes parts: 1 0.000005 Mol + Evolving + Solutes parts: 1 0.000005 Mol + Evolving + Solutes parts: 0.00005 Mol + Evolving + Solutes parts: 1 0.000005 Mol + Evolving + Solutes parts: 1 0.000005 Mol + Evolving + Solutes parts: 1 0.000005 Mol + Evolving + H= 0.00005 Mol + Evolving + Fixed or evolving + H= 0.00005 Mol + Evolving + Fixed or evolving + H= 0.00005 Mol + Evolving + Fixed or evolving + H= 0.00005 Mol + Evolving + Fixed or evolving + H= 0.00005 Mol + Evolving		cs & i		(=	(051) × 1	See WWW	$\stackrel{\scriptstyle{}}{=}$ \leftarrow \rightarrow C \bigcirc co2seq.sdsu.edu
Image Image Solutes Control Solutes Control Solutes Control Solutes Control Solutes Control		neral Wat							
Sing data at mining to be direction. Concentration Under compositions to use: Update Quantity Concentration Dotation Concentration Under compositions to use: Update Quantity			-	👐 www.eng	jineering.sd	co2seq.so	lsu.edu 🧶	Time War	
Single dia a mineral to disagone. Update Quantity Ceneral Ya Update Compositions to use: 2 Update Quantity Upda	Desktop Minerals Kinetics Equilibrium Solutes	Control							
Under Upgat :so0 Logged nas user packin Legend Water Compositions to use: 2 Update Quantity Upgat :so0 Logged nas user packin Legend Water Compositions Lithology Compositions Desktop Minerals Kinetics Equilibrium Solutes Control is a mineral to display the mineral information. Double did a mineral to add to or remove from the Selected Minerals Int. Solutes Concentration: Units: Fixed or evolving Update Quantity Vater Compositions to use: 2 Update Quantity Vater Compositions Lithology Com		I to add to				ma geot			
Interface Desktop Minerals Kinetics Equilibrium Solutes Control Composition Domain Control Composition Desktop Minerals Kinetics Equilibrium Solutes Control Solutes Composition Domain Control Control <td></td> <td></td> <td>Upload .s</td> <td></td> <td>ROI</td> <td></td> <td>G</td> <td>eneral wa</td> <td>Logged in as user paolini Logout</td>			Upload .s		ROI		G	eneral wa	Logged in as user paolini Logout
Water 1 Water 2 Solutes parts: 11	Total number of water compositions to use: 2	uantity							Desktop Minerals Kinetics Equilibrium Solutes Control Composition Domain Constants Calculation Resul
Water 1 Water 2 Solutes parts: 11 Ca++ 0.000026 Mol Evolving ~ Solutes parts: 11 Solutes parts: 11 <t< td=""><td>Water Compositions Lithology Compositions</td><td></td><td>Desktop</td><td>Minerals</td><td>Kinetics</td><td>Equilibrium</td><td>Solutes</td><td>Contro</td><td>ongle did a minetar to doptay the minetar monitation. Boable did a minetar to add to or tempter from the belease a minetar in the belease a minetar in a</td></t<>	Water Compositions Lithology Compositions		Desktop	Minerals	Kinetics	Equilibrium	Solutes	Contro	ongle did a minetar to doptay the minetar monitation. Boable did a minetar to add to or tempter from the belease a minetar in the belease a minetar in a
Soldes parts: II Total number of water compositions to use: 2 Update Quantity Mater Compositions Mater Compositions Lithology Compositions	Water 1 Water 2				ly the mineral i	information. Doub	le click a miner	al to add to	
Solute: Concentration: Units: Fixed or evolving: H+ 0.000026 Mol Evolving Mater Compositions Lithology Compositions H2O 1.0 Mol Fixed Water Compositions Lithology Compositions Lithology Compositions Ca++ 0.0025 Mol Evolving Water 2 Solute: Occentration: Units: Fixed or evolving: K+ 0.00005 Mol Evolving Solute: Concentration: Units: Fixed or evolving: H+ 0.000017 Mol Evolving Solute: Concentration: Units: Fixed or evolving: K+ 0.00005 Mol Evolving Solute: Concentration: Units: Fixed or evolving: Na+ 0.40 Mol Evolving Lithology Could Al(CH)3(aq) 0.000017 Mol Evolving Lithology Could Could Solute: Concentration: Fixed 0.0000 0.0000 Rate adjustment factors: Lithology Rate adjustment factors: Lithology Rate adjustment, shales - quatz 1.00 Na+	Solutes parts: 11		Total numbe	r of water c	ompositions	to use: 2	Update 0	Quantity	
H2 0.00000000000000000000000000000000000									Water Compositions Lithology Compositions
Ca++ 0.0025 Mol Evolving • Al(OH)3(aq) 0.0000017 Mol Evolving • Solute: Concentration: Units: Fixed or evolving • K+ 0.00005 Mol Evolving • O.000017 Mol Evolving • SiO2(aq) 0.001 Mol Evolving • O.0025 Mol Evolving • H+ 0.00001 Mol Evolving • No • Evolving • SiO2(aq) 0.002 Mol Evolving • 1.0 Mol Evolving • Na+ 0.4 Mol Evolving • Al(OH)3(aq) 0.000017 Mol Evolving • K+ 0.00001 Mol Evolving • Al(OH)3(aq) 0.0000017 Mol Evolving • Mg++ 0.00001 Mol Evolving • Al(OH)3(aq) 0.00005 Mol Evolving • anothite 0.0200 0.0010 Rate adjustment, shales - feldspars: 1.00 <td></td> <td></td> <td></td> <td></td> <td>Lithology C</td> <td>ompositions</td> <td></td> <td></td> <td> lithology 1</td>					Lithology C	ompositions			lithology 1
Air or output Note Note Note Note Note Concentration: Units: Fixed or evolving Nineral: Volume Fraction: Grain Radius (mm): K+ 0.000017 Mol Evolving H+ 0.00001 Mol Evolving Nineral: Volume Fraction: Grain Radius (mm): SiO2(aq) 0.001 Mol Evolving H2O 1.0 Mol Evolving Nineral: Volume Fraction: Grain Radius (mm): Na+ 0.4 Mol Evolving Ca++ 0.000017 Mol Evolving Image: 0.00000 0.0300 Rate adjustment, dissolution: 1 Na+ 0.4 Mol Evolving K+ 0.00005 Mol Evolving Image: 0.0200 0.0300 Rate adjustment, dissolution: 1 Mg++ 0.00001 Mol Evolving K+ 0.00005 Mol Evolving Rate adjustment, shales - feldspars: 1.00 K+ 0.00001 Mol Evolving SiO2(aq) 0.001 Mol Evolving K+ 0.00000 Not Not					-				Minerals parts: 9
K+ 0.00005 Mol Evolving H+ 0.00001 Mol Evolving Guartz 0.4500 0.0200 Reaction rate adjustment factors: Readiument, dissolution: 1 SiO2(aq) 0.001 Mol Evolving Ca++ 0.0025 Mol Evolving Immutation Nath 0.0000 0.0300 Rate adjustment factors: Rate adjustment, dissolution: 1 Na+ 0.4 Mol Evolving Immutation Nol Evolving Immutation Nath 0.00001 Mol Evolving Immutation Reaction rate adjustment factors: Rate adjustment, dissolution: 1 Na+ 0.4 Mol Evolving Nol Evolving Immutation Nol Evolving Immutation Nol Nath						11.5	·		
Kit Good Holin Evolving Holin Evolving Holin Evolving Kit Good Holin Evolving Kit Good Holin Evolving Kit Good Good Good Good Rate adjustment, dissolution: 1 Ma+ V 0.0001 Mol Evolving Kit 0.0000017 Mol Evolving Good 0.0000 0.0000 Rate adjustment, dissolution: 1 Mg++ V 0.00001 Mol Evolving Kit 0.000055 Mol Evolving Good 0.0000 Rate adjustment, shales - quartz: 1.00 Kabilitie 0.00001 Mol Evolving Kit SiO2(aq) 0.001 Mol Evolving Kit SiO2(aq) 0.001 Mol Evolving Kit SiO2(aq) Kit SiO2(aq) 0.001 Mol Evolving Kit Siod Siod Siod <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
CO2(aq) 0.002 Mol Evolving Image: Cost of the c					5001			_	
Vat Volume					125			_	
Max M								_	
Implified Classical								_	
Cl- v 0.4 Mol v Evolving v 0.5 Mol v 0.5 M								-	
								-	
Na+ - 0.4 Mol - Evolving - illite-sh - 0.0000 0.0001			Na+	▼ 0.4				-	
Mg++ v 0.00005 Mol v Evolving v halite v 0.0000 0.0100			Mg++	▼ 0.00	0005	Mol		-	
Fe++ v 0.000005 Mol v Evolving v				▼ 0.00	00005	Mol		-	
CI- V 0.4 Mol V Evolving V			CI-	▼ 0.4		Mol	Evolving	-	
http://co2seq.sdsu.edu	to the E								
http://co2sea.sdsu.edu	- UIL								http://co2seg.sdsu.edu

http://simc.sdsu.edu

SAN DIEGO STATE

UNIVERSITY

SOPO Goal #1: RIA for Simulating Water-Rock Interaction

Domain co	onfiguratio	on: compi	utational	Caral Chada		eering.sdsu × ↑ co2seq.sdsu.edu × ♦
grid, water	assignm	ent, simu	lation time	← → C ③ co2seq.sdsu.edu	nbox (1051) 🗙 🕬 www.engin	★ w 4
← → C (S) co2seq.sds	u.edu	xxx www.engineering.sdsu ×	Co2seq.sdsu.edu ×	sienna g	eodynamics & 🛐 S	AN DIEGO STATE Sym.C INIVERSITY ck Interaction and Reactive-Transport Simulation
		ics & San Diego UNIVERSITY General Water-rock Interaction an		Ktop Minerals Kinetics Equilib		Logged in as user paolini Loggeut composition Domain Constants Calculation Results define your simulation domain.
			Logged in as user paolini Logout	hology Water Composition vs Time	Subsidence Data / Temperature	
Desktop Minerals Kinet		Control Composition D	Iomain Constants Calculation Results	er: Lithology Name: Resident Wate	r: Thickness (m): Grid Cells: ▼ 50.00 200	Under the control tab, the system is oriented horizontal so please draw vertical lines
Lithology Water Composit Starting depth (m):	ion vs Time Subsidence Dat	ta / Temperature	∫ 🛐 Google Calendar 🛛 🗡 Gmail - Inbox (1051) -	× www.engineering.sdsu × co2seq.sdsu		Undo last placement Start Over
Surface intercept temperature Initial background temperature			 ← → C ③ co2seq.sdsu.edu ☐ Google → www.engineering.sd ☐ co2seq.sdsu.edu 		W W D Other bookmarks	
Number of segments: Total Simulation Depth (m) Time (years)	2 Display	y Seepage Inter-grant Velocity	Sienna geodyna	amics & SAN DIEGO STATE S UNIVERSITY		
0.0000 -3,000.00	25.0	[cc/(cm ² year)]/φ 0.000 0.000 300.000 0.000	file	utes Control Composition Domain Cons	user paolini Logout tants Calculation Results	Layer 1: lithology1 Sandstone
0.000	23.0	500.000	Water Name: Time to start using (mybp): Not			
			Water 1 0 0			
to the forth to CSRC						
iosibronu's						San Diego State University

mary gateh

SOPO Goal #1: RIA for Simulating Water-Rock Interaction

http://co2seq.sdsu.edu http://simc.sdsu.edu

SOPO Goal #2: New Course on CO₂ Sequestration at SDSU

- I developed and successfully taught a new course entitled *Carbon Capture and Sequestration* at San Diego State University.
- Course took place during the fall semester of 2011 (August 22 through December 13) and meet twice a week on Tuesday and Thursday from 4:00 PM to 5:15 PM for 3 units of graded credit.
- The topics covered included brine water chemistry, cap rock chemistry, carbonaceous mineral reactions, geochemical redox reactions, thermodynamics fundamentals, the *Helgeson-Kirkham-Flowers* (HKF) model for computing thermodynamic properties of aqueous electrolytes, fundamentals of chemical kinetics, kinetics of mineral carbonation, and the computation of aqueous solute activities.
- RIA was used by the students to simulate various CCS scenarios and other geochemical processes (e.g. Liesegang banding in sandstone).

tildissib 1914

- Motivation for one problem: Frio Brine Pilot experiment showed a pH decrease before the arrival of HCO₃⁻.
- Students asked to show if simulation showed same result and provide an explanation.

SOPO Goal #2: New Course on CO₂ Sequestration at SDSU

- 1D horizontal simulation ($T = 20^{\circ}C$ to $120^{\circ}C$). .
- CO_{2(aq)} injected at seepage velocities of 100, 200, 300, 400, and 500 $[cc/(cm^2 yr)]/\phi$ for 5 years.
- The CO₂-rich injectant water was modeled as a mixture • of the formation water and 0.5M solutions of $CO_{2(aq)}$.

ron as tracer with 5x the molarity (non reactive).								
lon	Formation Water	Injectant Water						
pН	5.59	5						
CO2 (aq)								
HCO3-	total 0.002M	Total 0.5M						
CO3								
Ca++	0.0025 M	0.0025 M						
AI(OH)3	1.7x10-6 M	1.7x10-6 M						
K+	5.0x10-5 M	5.0x10-5 M						
SiO2(aq)	0.001 M	0.001 M						
Na+	0.4 M	0.4 M						
CI-	0.4 M	0.4 M						
Fe++	1.0x10-5 M	5.0x10-5 M						
Mg++	1.0X10-4 M	5.0x10-4 M						

and to the Fu

endissib 1914

- Finding: separation distance changes in time as a function of reservoir temperature and seepage velocity.
- Front separation occurs when advective driven solute transport is less dominant than diffusive driven transport.
- Local minima at high temperatures and low injectant velocity.
- Maxima propagates to a lower temperature region over time.

- Another problem: investigate vertical CO₂ diffusion through three different lithologies.
- Pure diffusion problem (seepage velocity $v_x = 0$ m/s)

SDSU Carbon Capture and Sequestration Simu		SDSU Carbon Capture and Sequestration Simulation - Mozilla Firefox
ile <u>E</u> dit <u>V</u> iew Hi <u>s</u> tory <u>B</u> ookmarks <u>T</u> ools		Eile Edit View Higtory Bookmarks Iools Help
SDSU Carbon Capture and Sequestrat ×	SDSU Carbon Capture and Sequestrat × +	SDSU Carbon Capture and Sequestrat × SDSU Carbon Capture and Sequestrat × +
🗲 🛞 symc.sdsu.edu	☆ マ C 💽 - Search 🔎 🎓 🥐 🔻	Symc.sdsu.edu ☆ ♂ ♂) 🔍 - Search 🔎 🎓 🥙
ј Most Visited 📙 Smart Bookmarks 📙 Place	s 🗍 Getting Started 🗍 ClassTA Local 🦳 http://thermo.sdsu.ed 🗍 www.classta.net 💦 👋	🙆 Most Visited 📙 Smart Bookmarks 📙 Places 🔅 Getting Started 🔅 ClassTA Local 🔅 http://thermo.sdsu.ed 🔅 www.classta.net
NETL sienna g	Ceneral Water-rock Interaction and Reactive-Transport Simulation	Sienna geodynamics & SAN DIEGO STATE Sym.C UNIVERSITY General Water-rock Interaction and Reactive-Transport Simulation Status
Desktop Minerals Kinetics Equilib	rium Solutes Control Composition Domain Constants Calculation Results	Desktop Minerals Kinetics Equilibrium Solutes Control Composition Domain Constants Calculation Results
ngle click a mineral to display the mineral information II be used in reactions.	n. Double click a mineral to add to or remove from the Selected Minerals list. Minerals in the Selected Minerals list	Single dick a mineral to display the mineral information. Double click a mineral to add to or remove from the Selected Minerals list. Minerals in the Selected Minerals list will be used in reactions.
eqn diffusive fe moles/l eqn diffusive mg moles/l eqn advective h moles/l eqn advective o moles/l eqn advective c moles/l eqn advective at moles/l eqn advective at moles/l eqn advective ca moles/l eqn advective ca moles/l eqn advective k moles/l eqn advective k moles/l	Segment Time: 5.00031 years Log scale: ○ View Plot(s) data	eqn diffusive fe moles/l sim86219946000071219217.sdb eqn diffusive moles/l eqn advective noles/l eqn advective or moles/l eqn advective or moles/l eqn advective a moles/l eqn advective a moles/l
en advective fe moles/i en advective moles/i en reaction o moles/i en reaction o moles/i en reaction a moles/i en reaction at moles/i en reaction at moles/i en reaction ca moles/i en reaction ca moles/i en reaction ca moles/i en reaction fe moles/i en reaction fe moles/i en reaction moles/i en reaction fe moles/i en reaction moles/i en reaction fe moles/i c he Molar c holar c holar c holar		e en advective 6 moles/l en advective 6 moles/l en eacterite momoles/l en eacterite momoles/l en reaction comoles/l en reaction at moles/l en reaction at moles/l en reaction at moles/l en reaction is moles/
c co3-m Molar c co4ca Molar c aloh3aq Molar c aloh3aq Molar c ca+ Molar c ca+ Molar c ca+ Molar c k+ Molar c k+ Molar c mg++ Molar activity coeff. h+ n/a activity coeff. h+ n/a activity coeff. h+ n/a activity coeff. co3-n/a activity coeff. co3-n/a activity coeff. co3-n/a activity coeff. co3-n/a activity coeff. co3-n/a	0 0.1 0.2 0.3 0.4 Mol/L	c co3-Molar c co3a Molar c co3a Molar c co4a Molar c ca+ Molar c c-+ Molar c c-+ Molar c c-+ Molar c c-+ Molar c c+- Molar activity coeff hcn /va activity coeff co3- n/a activity coeff co3- n/a

SOPO Goal #2: New Course on CO₂ Sequestration at SDSU

• Using the RIA to investigate Liesegang banding in sandstone.

Idiosidian,

- Asked students to investigate naturally occurring patterns of Hematite precipitation iron(III) oxide (Fe₂O₃) over a 5m portion of sandstone.
- Configuration: seepage velocity $v_x = 0.35 \text{ m/(yr }\phi)$, $T_{res} = 60^{\circ}\text{C}$ and $D_{res} = 2000 \text{m}$

UNIVERSITY

SOPO Goal #2: New Course on CO₂ Sequestration at SDSU

- By specifying a fairly large number (~200) of cells, the pattern formation becomes apparent after 10 years (Liesegang Banding).
- Precipitation occurs where hematite saturation >1

SAN DIEGO STATE

UNIVERSITY

SOPO Goal #3: Computational Science Program Development

- Three current graduate students: Christopher Binter, MS Geological Sciences; Eduardo J. Sanchez Peiro, PhD Computational Science; Jonathan L. Matthews, PhD Computational Science
- Christopher Binter: heat transfer and multiphase fluid flow module. Initial implementation solves a temperature advection-diffusion equation using Spalding and Patankar's Semi-Implicit Method for Pressure Linked Equations (SIMPLE) algorithm with source term calculated using the Helgeson-Kirkham-Flowers (HKF) model for computing thermodynamic properties of aqueous electrolytes.
- Eduardo J. Sanchez Peiro: *parallel mass transport solver*. Implementation of a parallel large-sparse system solver module to solve for solute concentrations in parallel on SDSC TeraGrid/XSEDE system *trestles.sdsu.edu* using SuperLU distributed solver developed at Lawrence Berkeley National Laboratory.
- Jonathan L. Matthews: poroelastic pore pressure module. Implementation of a discretized pore pressure diffusion model that computes the resultant mean stresses in rock. The calculated stresses used to investigate the occurrence and behavior of rock fractures during injection of CO_{2.(aq)} into sandstone.

SOPO Goal #3: Computational Science Program Development

 Initial heat transfer module implementation: 1D transient advection-diffusion with source based on HKF model

$$\frac{\partial}{\partial t} (\rho T) + \frac{\partial}{\partial x} (\rho u T) = \frac{\partial}{\partial x} \left(\Gamma \frac{\partial T}{\partial x} \right) + S_T$$

$$(\rho u T)_e - (\rho u T)_w = \left(\Gamma \frac{\partial T}{\partial x} \right)_e - \left(\Gamma \frac{\partial T}{\partial x} \right)_w + S_T \Delta x$$

$$a_p T_p = a_W T_W + a_E T_E$$

$$a_p = a_W + a_E + \left(F_e - F_w \right)^* a_e = D_e - \frac{F_e}{2} \quad a_w = D_w + \frac{F_w}{2}$$

$$M = P = E$$

$$M = P = E$$

$$F_w = (\rho u)_w$$

$$F_w = (\rho u)_w$$

$$B_v = \frac{\Gamma_w}{\delta x_{WP}}$$

$$F_w = (\rho u)_v$$

$$B_v = \frac{\Gamma_w}{\delta x_{WP}}$$

$$F_w = (\rho u)_v$$

$$B_v = \frac{\Gamma_w}{\delta x_{WP}}$$

$$F_w = (\rho u)_w$$

$$B_v = \frac{\Gamma_w}{\delta x_{WP}}$$

$$F_w = (\rho u)_w$$

$$F_w = (\rho u)_w$$

$$B_v = \frac{\Gamma_w}{\delta x_{WP}}$$

$$F_w = (\rho u)_v$$

$$F_w = (\rho u)_w$$

$$B_v = \frac{\Gamma_w}{\delta x_{WP}}$$

$$F_w = (\rho u)_v$$

$$F_w = (\rho u)_w$$

$$B_v = \frac{\Gamma_w}{\delta x_{WP}}$$

$$F_w = (\rho u)_w$$

$$B_v = \frac{\Gamma_w}{\delta x_{WP}}$$

$$F_w = (\rho u)_w$$

$$F_w = (\rho u)_w$$

$$B_v = \frac{\Gamma_w}{\delta x_{WP}}$$

$$F_w = (\rho u)_w$$

$$F_w = (\rho u)_w$$

$$B_v = \frac{\Gamma_w}{\delta x_{WP}}$$

$$F_w = (\rho u)_w$$

$$B_v = \frac{\Gamma_w}{\delta x_{WP}}$$

$$F_w = (\rho u)_w$$

endisciputit

San Diego State University

SOPO Goal #3: Computational Science Program Development

The source term represents the energy generation as heat resulting from a ٠ change in solute concentration.

$$S_T = \sum_{j=1}^n \left(\frac{M_j}{c_{p,j(aq)}}\right)^{-1} \left(\frac{dc_j}{dt}\right) H_j; \quad \left[\frac{gK}{m^3s}\right]$$

Thermodynamic properties (molar heat capacity, molar volume, and molar ٠ enthalpy) of charged aqueous solute species computed using Helgeson-Kirkham-Flowers (HKF) Model.

$$\overline{c}_{p} = c_{1} + \frac{c_{2}}{\left(T - \Omega\right)^{2}} - \frac{2T}{\left(T - \Omega\right)^{3}} \left[a_{3} \left(P - P_{r}\right) + a_{4} \ln\left(\frac{\Upsilon + P}{\Upsilon + P_{r}}\right) \right] + WTX + 2TY \left(\frac{\partial W}{\partial T}\right)_{P} - T\left(Z - 1\right) \left(\frac{\partial^{2} W}{\partial T^{2}}\right)_{P}$$

- The relative permittivity (dielectric constant) of H_2O , the Born coefficient, • and the Born functions are also calculated for a given temperature, pressure, and density.
 - Ψ = Solvent pressure (2600 bar)
 - Θ = Water singularity temperature (228K) ϵ = Permittivity of H₂O (-)
 - $P_r = Reference pressure (1 bar)$
 - P = Simulation pressure (bar)
 - T = Simulation temperature (K)

- $\omega = Born coefficient (J/mol)$
- - Z, Y, X = Born functions (-), (1/K), $(1/K^2)$

SOPO Goal #3: Computational Science Program Development

• Example result: v_x = 30cm/yr, CO_{2(aq)} conc. = 3M, t = 1000yr, T_{res}= 59°C

So American

tindissibratu

SOPO Goal #3: Computational Science Program Development

 Evolution of chemical elemental mass depends on mass-transfer from diffusive and advective forces as well as the precipitation and dissolution of minerals governed by kinetic reaction rates

f porosity

"iosinia

- D diffusion coefficient
- u water flow velocity
- n reaction stoichiometry
- A mineral surface area

- c solute concentration
- e chemical elemental mass
- G mineral reaction rate
- k reaction rate constant
- β solute atom index
- γ mineral index
- $\rho_{\gamma}~$ mineral solid molar density

- K equilibrium constant
- Ea activation energy
- R gas constant
- Γ temperature
- α aqueous solute
 species index

SAN DIEGO STATE

UNIVERSITY

(A. J. Park)

SOPO Goal #3: Computational Science Program Development

- Parallel mass transport solver implementation: parallel large-sparse system solver module to solve for solute concentrations in parallel on SDSC TeraGrid/XSEDE system *trestles.sdsu.edu* using SuperLU *distributed*, developed at Lawrence Berkeley National Laboratory.
- Mass-transfer coefficient matrices constructed from formation and injectant water velocities and solute concentrations, derived from the previous iteration, are structured and then solved using LU factorization.
- Formulation is not well suited for execution on many-core distributed clusters.
- New scheme: all solute concentrations in all control volumes are solved simultaneously by constructing a large block-banded sparse matrix.

BLOGS: Block-defined Global Sparse Scheme

SOPO Goal #3: Computational Science Program Development

• We define the following system of rank $N \times N_a$:

at the *i*-th node.

SOPO Goal #3: Computational Science Program Development

 $\mathbf{B}_{i,j-1}^{w}$ and $\mathbf{B}_{i,j+1}^{e}$ are both sparse and diagonal blocks of dimension $(N_a \times N_a)$ from discretization terms at both the west-neighboring (*w*) node and the east-neighboring (*e*) node.

SOPO Goal #3: Computational Science Program Development

 $W_{1,1}$ to $W_{1,N}$ are sparse and diagonal blocks of dimension $(N_a \times N_a)$ from discretization terms at both the west boundary. These comprise the first N_a rows of the matrix.

SOPO Goal #3: Computational Science Program Development

 $\mathbf{E}_{N,N}$ to $\mathbf{E}_{N,1}$ are sparse and diagonal blocks of dimension $(N_a \times N_a)$ from discretization terms at both the east boundary. These comprise the last N_a rows of the matrix.

SOPO Goal #3: Computational Science Program Development

 \mathbf{c}_i is the vector of length N_a of all the concentration variables at node *i*.

SOPO Goal #3: Computational Science Program Development

 $\mathbf{r}(\mathbf{c}_i)$ is a vector of length N_a of all the contributions from considered reactions, also at node *i*.

SOPO Goal #3: Computational Science Program Development

- Poroelastic pore pressure module. Implementation of a discretized pore pressure diffusion model that computes the resultant mean stresses in rock. The calculated stresses used to investigate the occurrence and behavior of rock fractures during injection of CO_{2.(aq)} into sandstone.
- Pressure diffusion follows the following non-homogeneous diffusion equation.

$$\frac{\partial p}{\partial t} - c\nabla^2 p = -\frac{\alpha}{S}\frac{dg}{dt} + \frac{Q}{S}\frac{dg}{dt}$$

Biot-Willis Coefficient, relates fluid gain relative to increases in strain under constant pore pressure
 Uniaxial specific storage, relates fluid gain to increases in pore pressure under uniaxial strain conditions

P- Fluid source, rate fluid is added to a given reference volume per unit time not due to poroelastic flow

• However, in the case of an irrotational displacement field with the boundary conditions that ϵ , σ_{kk} , and p vanish at an infinite boundary, the integrating constant g(t) is identically zero, so the equation simplifies to:

$$\frac{\partial p}{\partial t} - c\nabla^2 p = \frac{Q}{S}$$

$$c - \text{Uniaxial hydraulic diffusivity, controls the rate of pore pressure diffusion } \frac{\partial p}{\partial t} = \frac{Q}{S}$$
San Diego State UNIVERSITY

SOPO Goal #3: Computational Science Program Development

 Using a first order implicit time derivative and a second order derivative in x, we discretize the equation as follows

$$\frac{p_j^{n+1} - p_j^n}{\Delta t} - c \frac{p_{j-1}^{n+1} - 2p_j^{n+1} + p_{j+1}^{n+1}}{\left(\Delta x\right)^2} = \frac{Q(x_j, t_{n+1})}{S}$$

 From this discretization, we get the following equations for the interior nodes:

$$p_{j}^{n} = rp_{j-1}^{n+1} + (1-2r)p_{j}^{n+1} + rp_{j}^{n+1} - \Delta tf(x_{j}, t_{n+1})$$

where $r = c \frac{\Delta t}{\Delta x^2}$ and $f(x_j, t_{n+1}) = \frac{Q(x_j, t_{n+1})}{S}$.

SOPO Goal #4: Provide Industry with Trained Graduates

- Through this research grant, Christopher Binter has gained important and useful knowledge on CO₂ sequestration, carbonate mineralization, and reactive transport modeling.
- Knowledge gained directly from this grant determined his selection to be a summer intern at ExxonMobil where he is presently researching carbonate reefs in the North Caspian Sea.

SOPO Goal #4: Provide Industry with Trained Graduates

- Eduardo J. Sanchez Peiro was accepted into the highly competitive Research Experience in Carbon Sequestration (RECS) 2012 program that was held June 3-13 in Birmingham, Alabama.
- RECS is a DOE/NETL sponsored intensive 10day summer program that fosters and advances education, scientific research, professional training, and career networks for graduate students and young professionals in the carbon capture, utilization and storage (CCUS) field (http://www.recsco2.org/).
- Through the direct training and research experience Eduardo has gained from participating in this project, Eduardo was chosen to attend this year's RECS program.

Accomplishments to Date

- Created a university-industry partnership with Sienna Geodynamics that has allowed SDSU to develop an intuitive Web interface to a water-rock interaction code that reduces the learning curve for geology and chemistry students to model and simulate typical CCS scenarios.
- Interface allows users to rapidly prototype 1D aqueous CO₂ injection into formation consisting of multiple lithologies, and then quickly pose *what-if* questions.
- Database includes support for many minerals, kinetic and "equilibrium" reactions, arbitrary number of fluid mixtures with many supported aqueous solute species.
- Licensing arrangement with Sienna Geodynamics has allowed SDSU to extend provided code to develop heat transfer and poroelastic pore-pressure modules and implement a novel new parallel solute mass transport scheme suitable for execution on TeraGrid/XSEDE systems.
- Development of new course at SDSU that focuses on the computational geochemistry of CO₂ sequestration.
- Successful placement of students into internships and research programs.

Summary

- Key Findings: Initial experimentation with Web interface in the classroom, used to model the Frio Pilot Test, has shown the injection front is preceded by an acidic front that develops as a result of different solute diffusivities.
- The acidic front, marked by an increase in H⁺ concentration, could have an adverse effect on lithologies and seals.
 target reservoir

- Since solute diffusion and mineralization rates are temperature dependent, we are currently working on adding a heat transfer module to our simulator to capture changes in formation water temperature that occur during CO₂ injection.
- Lessons Learned: positive results using the Helgeson-Kirkham-Flowers (HFK) model to compute thermodynamic properties of aqueous electrolytes needed for the source term in the heat transfer model.
- Future Plans: Implementation of 2D and 3D mass and heat transport, support for multiphase flow (supercritical CO₂, oil, and gas phases), comparison with results from TOUGHREACT and STOMP.

Appendix

These slides will not be discussed during the presentation, but are mandatory

Organization Chart

Gantt Chart

• Simple Gantt chart showing project lifetime in years on the horizontal axis and major tasks along the vertical axis.

Major Tasks	AJAX Web Application Investigation and Design	WebSimC Application Development and Testing	Frio Test and Other Problem Prototyping	<u>Blo</u> ck-defined <u>G</u> lobal <u>S</u> parse <u>S</u> cheme Development	CCS Course Preparation	CCS Course Taught	Poroelastic Pore Stress Module Development
	AJAX Investiç	lolaveloj Develoj	Frio Test	<u>Blo</u> ck-defined <u>G</u> l	CCS C	SOO	Heat Transfer Module Development

1/10 - 3/10 4/10 - 6/10 7/10 - 9/10 10/10 - 12/10 1/11 - 3/11 4/11 - 6/11 7/11 - 9/11 10/11 - 12/11 1/12 - 3/12 4/12 - 6/12 7/12 - 9/12 10/12 - 12/12

Project Lifetime (years)

Bibliography

- Paolini, C., Park, A. J., Binter, C., and Castillo, J. E., An investigation of the variation in the sweep ٠ and diffusion front displacement as a function of reservoir temperature and seepage velocity with implications in CO2 sequestration, 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit and the 9th Annual International Energy Conversion Engineering Conference, 31 Jul - 3 Aug 2011, San Diego Convention Center, San Diego, California.
- Binter, C., Paolini, C., Park, A. J., and Castillo, J. E., Utilization of Reaction-Transport Modeling Software to Study the Effects of Reservoir Temperature and Seepage Velocity on the Sweep Diffusion Front Displacement Formed after CO2-Rich Water Injection, Tenth Annual Conference on Carbon Capture and Sequestration, May 2-5, 2011, Pittsburgh, Pennsylvania.
- Paolini, C., Sanchez Peiro, E., Park, A. J., Castillo, J. E., A Distributed Mimetic Approach to ٠ Simulating Water-Rock Interaction following CO2 Injection in Sedimentary Basins, 2011 SIAM Conference on Analysis of Partial Differential Equations, San Diego, California, November 14-17, 2011.
- Binter, C., Park, A. J., Castillo, J. E., and Paolini, C., Incorporation of New Web-based Technology ٠ to Expand the Accessibility and Flexibility of RTM Software for use in Modeling CO2 Sequestration, Tenth Annual Conference on Carbon Capture and Sequestration, May 2-5, 2011, Pittsburgh, Pennsylvania.
- on Carbon Capture and Sequestration, May 2-5, 2011, Pittsburgh, Pennsylvania. Sanchez Peiro, E., Park, A. J., Castillo, J. E., and Paolini, C., Mimetic Finite Difference Methods: An Application in Modeling Geological Sequestration of Carbon Dioxide, Tenth Annual Conference

