FE/NETL CTS Cost Models and Benefits Assessment of Carbon Storage R&D Program

David Morgan

Benefits Division

Office of Program Planning and Analysis

National Energy Technology Laboratory

U.S. Department of Energy
National Energy Technology Laboratory
Carbon Storage R&D Project Review Meeting
Developing the Technologies and Building the
Infrastructure for CO₂ Storage
August 21-23, 2012

Presentation Outline

- Overview of benefits assessment
- Overview of FE/NETL models used to assess benefits of CO₂ capture and storage
- Benefits evaluation of Storage Program's R&D projects using a model to estimate costs of CO₂ storage in a saline aquifer
- Description of model used to estimate costs of CO₂ enhanced oil recovery (EOR)

Typical Approach to Benefits Assessment

Benefits

- As in cost-benefit
- Benefit of NETL R&D to the US economy & taxpayer
- Estimate cost of technology (e.g., CO₂ storage in saline aquifer) in absence of R&D (Baseline Scenario)
- Review R&D program to determine how R&D can influence costs
- Estimate cost of technology assuming R&D program is successfully implemented (R&D Scenarios)
- Difference in costs between Baseline Scenario and R&D Scenarios is measure of benefit

Factors Complicating Benefits Assessment of CO₂ Storage

- Baseline Scenario costs are highly uncertain
 - CO₂ storage is new technology
 - Applicable regulatory framework is evolving
 - Very few field projects to estimate/validate costs
- Not all R&D projects will result in quantifiable cost reductions (i.e., they have other benefits)
 - Benefits of infrastructure projects
 - Demonstrate feasibility of CO₂ storage
 - Establish/validate baseline scenario costs
- Model of CO₂ storage in a saline aquifer will be used to establish Baseline Scenario and R&D Scenario costs

An Alphabet Soup of Models

FE/NETL CO₂ Transport & Storage (CTS)-Saline Cost Model

- Point-to-point pipeline transport cost (pending)
- Cost and revenue from CO₂ storage in saline aquifer

FE/NETL CO₂ Transport & Storage (CTS)-EOR Cost Model

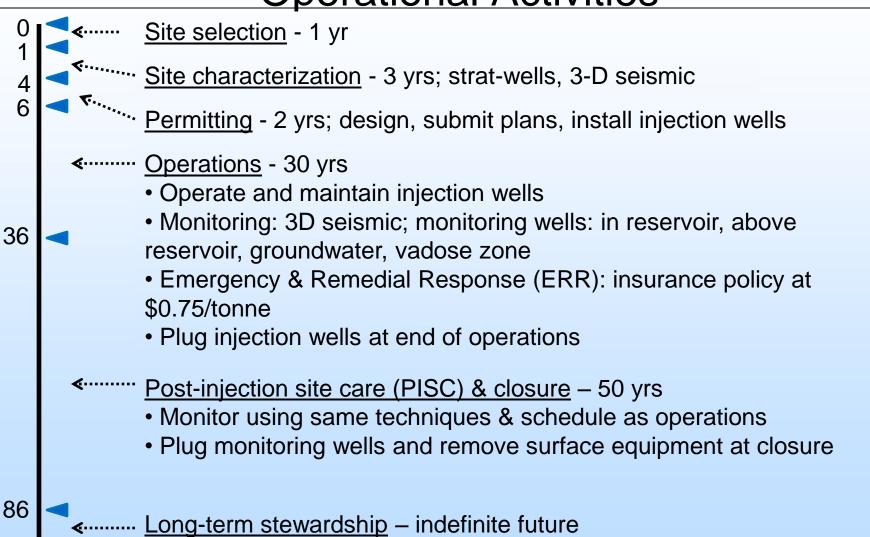
- Point-to-point pipeline transport cost (pending)
- Cost and revenue from CO₂ enhanced oil recovery (EOR)

FE/NETL CTUS Model

- Sources of CO₂
- CO₂ pipeline network
- Cost and revenue from CO₂ storage in saline aquifer and from CO₂ EOR

FE/NETL NEMS-CCUS Model

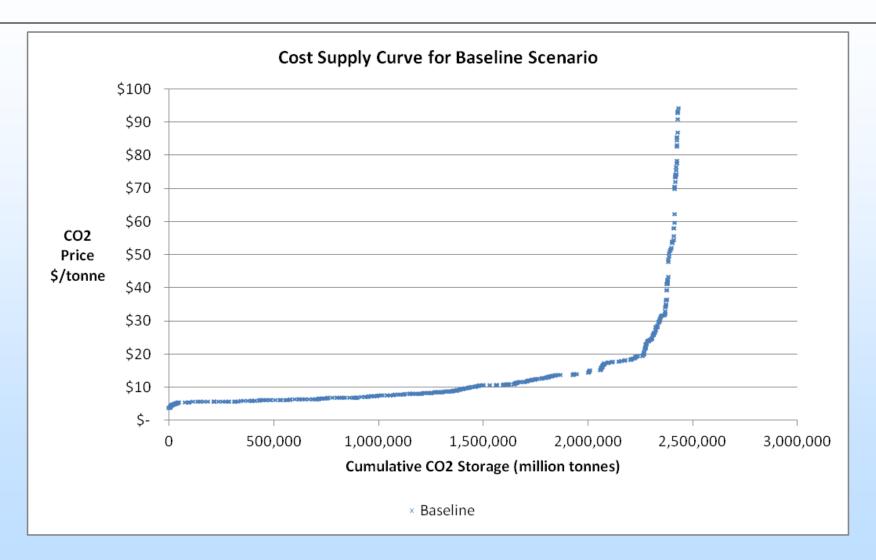
- Macroeconomic model of US economy
- Detailed model of US energy sector


Features of FE/NETL CTS-Saline Cost Model

- Estimates profit (or loss) for a project storing
 CO₂ in saline aquifer
- Includes cost of complying with Class VI injection well regulations and Subpart RR regulations
- Determines break-even price of CO₂
- Develops cost-supply curves for potential injection formations in US
- Identifies cost drivers for saline storage

FE/NETL CTS-Saline Cost Model: Injection Characteristics

- Specify mass of CO₂ to be stored annually: 3.2 million tonnes/yr
- Specify duration of injection: 30 years
- Select a formation from database of 151 geologic formations
- Model calculates:
 - CO₂ plume area
 - Number of injection wells needed


FE/NETL CTS-Saline Cost Model: Timeline of Operational Activities

Procedure for Calculating Cost-Supply Curve

- Calculate break-even first-year price of CO₂ for each formation (first year is 2012)
- Calculate total mass of CO₂ that can be stored in each formation
- Sort data by break-even price of CO₂
- Calculate cumulative mass of CO₂ that can be stored
- Plot break-even price of CO₂ against cumulative mass of CO₂ that can be stored

Baseline Cost-Supply Curve for Saline Storage

Cost Drivers for CO₂ Saline Storage

- Cost drivers (based on present value costs):
 - Strat-wells: about 10% of total costs
 - Injection wells: about 20% of total costs
 - Deep monitoring wells: about 20% of total costs
 - 3-D seismic: about 30% of total costs

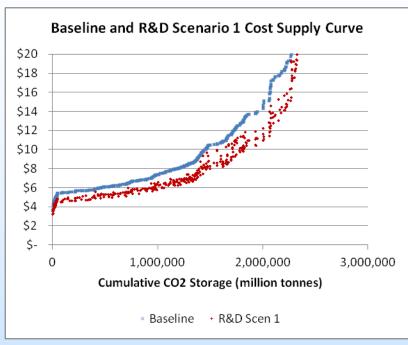
R&D Scenario 1

Reduce 3-D seismic cost

- R&D: Improve seismic imaging through rock core tests, model calibration and improved data processing
- Model changes: \$5 million for lab tests & model calibration; reduce 3-D seismic from \$160K/mi² to \$90K/mi²
- Reduce monitoring well density
 - R&D: Integrate models, monitoring data & improved data processing methods to better forecast CO₂ plume
 - Model changes: Reduce number of deep monitoring wells by about a third; add
 \$100K per year for increased data processing
- Reduce ERR cost
 - R&D: Characterize risks of storage, better locate storage sites to reduce risks, mitigate small leaks if they are detected
 - Model changes: Reduce ERR insurance policy premium from \$0.75/tonne to \$0.50/tonne of CO₂ injected

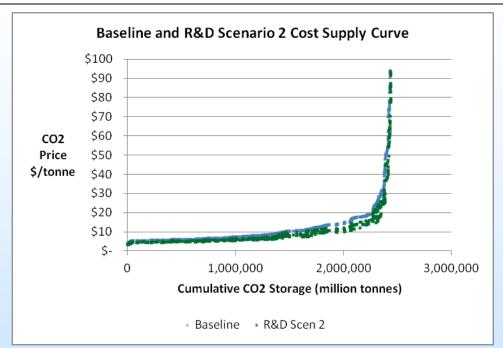
R&D Scenario 2

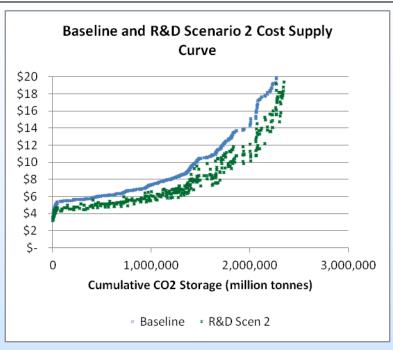
Reduce 3-D seismic cost


- R&D: Improve seismic imaging through rock core tests, model calibration and improved data processing
- Model changes: \$5 million for lab tests & model calibration; perform 3-D seismic during site characterization; replace 3-D seismic with 2-D seismic (10 lines)
- Maintain monitoring well density
 - R&D: Integrate models, monitoring data & improved data processing methods to better forecast CO₂ plume
 - Model changes: Maintain monitoring well density to partially compensate for 2-D rather than 3-D seismic; add \$100K per year for incr. data process.

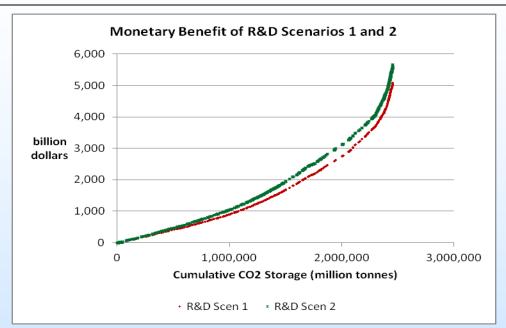
Reduce ERR cost

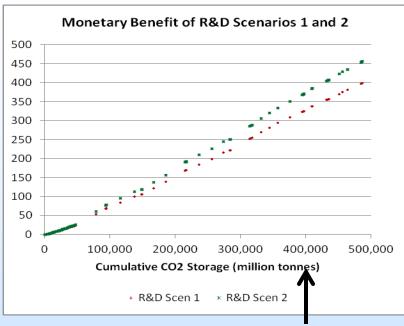
- R&D: Characterize risks of storage, better locate storage sites to reduce risks, mitigate small leaks if they are detected
- Model changes: Reduce ERR insurance policy premium from \$0.75/tonne to \$0.50/tonne of CO₂ injected


Influence of R&D Scenario 1 on Costs



Costs reduced 10 to 16%

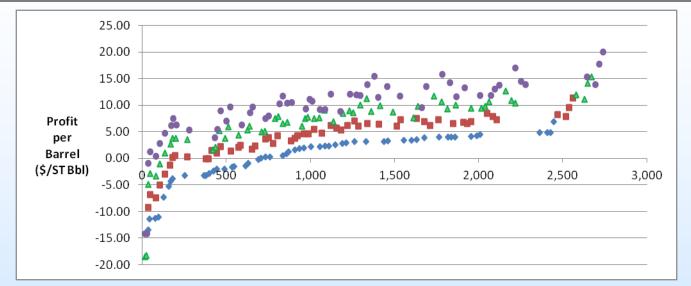

Influence of R&D Scenario 2 on Costs

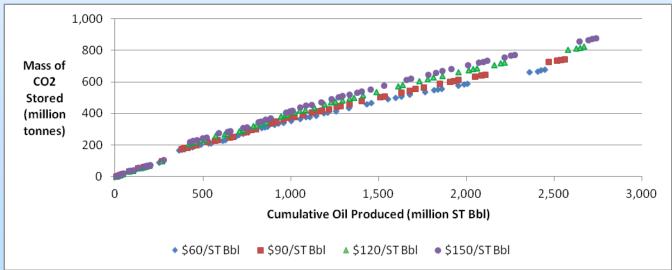


Costs reduced 11 to 17%

Potential Monetary Benefit of R&D

- 90% of estimated CO₂ emissions from electric power generation and industrial sources for next 100 years: 400,000 Mtonnes
- Benefit could potentially be many billions of dollars over next 100 years
- Benefit depends on how much CO₂ is stored and when it is stored (i.e., benefit needs to be discounted appropriately)


Next Steps in Benefits Evaluation (FY 2013)


- Continue to map R&D projects to activities in cost model
- Add activities to cost model, as necessary
- Work with NETL project managers and Principal Investigators to
 - Estimate possible impact of R&D projects on costs
 - Improve cost estimates for activities
 - Develop additional R&D scenarios

Features of FE/NETL CTS-EOR Cost Model

- Uses FE/NETL's CO₂-Prophet model to estimate oil production and CO₂ storage over time using a 5-spot pattern
- Implements patterns over time in oil reservoir
- Includes EIA's database of 1,831 oil reservoirs that EIA views as potential targets for CO₂ EOR
- Estimates profit (or loss) for a CO₂-EOR project and CO₂ stored in reservoir
- Example: Profit (or loss)/ST Bbl and CO₂ stored for reservoirs with OOIP over 50 million ST Bbl
 - CO₂ cost: \$30/tonne
 - Wellhead oil price: \$60, \$90, \$120, \$150/ST Bbl

Very Preliminary Results: Profit per Barrel of Oil Produced and Total Mass of CO₂ Stored

- As wellhead oil price rises, profitability increases
- However, cumulative oil production does not increase dramatically
- Also, mass of CO2 stored does not increase dramatically

Acknowledgements

- Project team:
 - NETL: Tim Grant, David Morgan, Charles Zelek
 - ESPA: Jason Valenstein, Andrea Poe, Jeff Withum,
 Paul Myles, Christa Court, Richard Lawrence, Bill
 Babiuch
- NETL SCC: John Litynski, Traci Rodosta, John Wimer, Sean Placynski, project managers in Sequestration Division
- KeyLogic: Derek Vikara, Malcolm Webster, Michael Tennyson

Thank you

• Questions?