Advanced Co-Sequestration Studies

Project Number 58159 Task 2

B. Peter McGrail Pacific Northwest National Laboratory

U.S. Department of Energy

National Energy Technology Laboratory
Carbon Storage R&D Project Review Meeting
Developing the Technologies and Building the
Infrastructure for CO₂ Storage
August 21-23, 2012

Presentation Outline

- Program Focus Area and DOE Connections
- Goals and Objectives
- Scope of Work
- Technical Discussion
- Accomplishments to Date
- Project Wrap-up
- Appendix (Organization Chart, Gantt Chart, and Bibliography

Benefit to the Program

Program goals addressed:

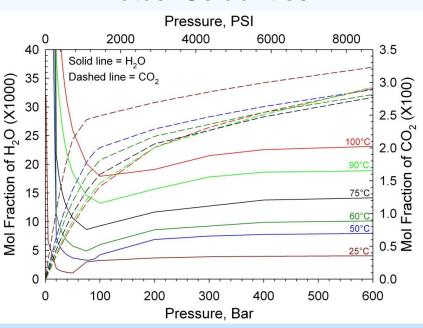
- Technology development to predict CO₂ and mixed gas storage capacity in various geologic settings
- Demonstrate fate of injected mixed gases

Project benefits statement:

- This research project conducts laboratory studies and modeling to advance fundamental understanding of sequestering mixed gas emissions produced from post- and oxy-combustion coal fired power plants
- Provides scientific basis for framing sensible regulatory requirements around sequestration of mixed gas streams
- Lower overall cost of CCUS through an emissions management strategy integrating surface and subsurface

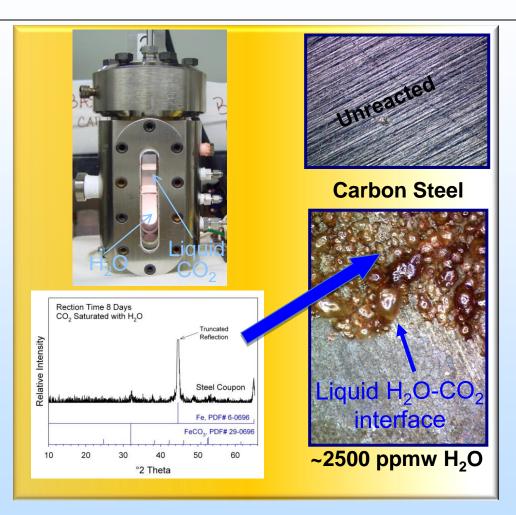
Project Overview: Goals and Objectives

- Goal: Develop geologic storage paradigm around mixed-gas streams to lower cost and energy penalty of integrated CCUS
- Objective: Utilization of CO₂ to enhance hydrocarbon production and minimize environmental impacts
 - Conduct experiments to examine reaction products, and mechanisms occurring in mixed gas systems
 - Advance reservoir modeling to predict fate and transport of mixed gases to optimize system efficiency
 - Implement connections between atomistic simulations and reservoir simulators to advance mechanistic insights for cosequestration systems


Project Overview: Scope of work

- Task 1 Pipeline and Casing (Transport) Materials Studies
 - Evaluate corrosion behavior of casing materials in CO₂-H₂O mixtures containing trace contaminates (i.e. SO₂,O₂,H₂S)
 - Evaluate impact of connate water uptake in scCO₂ mixtures on corrosion resistance of well construction materials
- Task 2 Mixed Gas Utilization and Storage
 - 2.1 Exploiting In situ Reactions
 - Evaluate reaction products, mechanisms, and rate of reactions in the CO₂-SO₂-O₂-H₂O system in carbonate reservoirs
 - Assess critical role of water solvated in the scCO₂ phase in catalyzing reactions that strip these contaminants from the scCO₂
 - 2.2 Co-sequestration reservoir modeling
 - Predict fate and transport of mixed gas systems and optimize system efficiency
 - 2.3 Molecular dynamics modeling
 - Utilization of atomistic simulations to gain mechanistic insight of the reactivity between scCO₂, water, and various components of a sequestration system
 - Identify possible reactive products and the barriers to such transformations guided by experiments
 - Formulate and incorporate new rate laws for scCO₂ phase chemical reactions
 - 2.4 Methane production and co-sequestration in shale gas formations

Rational for Examining Water Bearing CO₂


- Pipeline specifications vary and are largely related to end user application, i.e. EOR
 - Dry CO₂ and CO₂-H₂S streams are unreactive with pipeline steels
 - Knowledge gap for CO₂ streams containing intermediate water content
 - Multistage compression can be used to reduce water content in CO₂ stream and potentially eliminate dehydration system
 - Lack of industry experience with CO₂-SO₂ mixtures
- Initially dry liquid or supercritical CO₂ quickly absorbs water post-injection
- All current reservoir simulators treat the scCO₂ phase as being inert
- Only basic experimental scoping studies on rock-CO₂-water systems available
 - Regnault et al. 2005 (200°C, 105/160 bar several pure mineral phases)
 - Lin, et al. 2008 (100°C, <1 week, granite)
- No experiments or modeling with mixed gas WBSFs

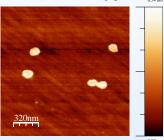
Mutual Solubilities

Computed from Spycher et al. 2003 EOS

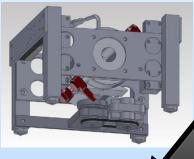
Mixed-Gas Transportation and Injection

McGrail, B. P., H. T. Schaef, V. A. Glezakou, L. X. Dang, and A. T. Owen. 2009. "Water Reactivity in the Liquid and Supercritical CO₂ Phase: Has Half the Story Been Neglected?" *Energy Procedia* 1(1):3415-3419.

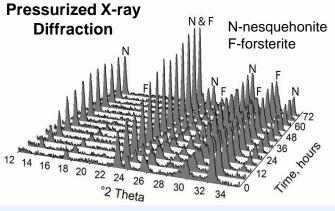
Key Issues


- Appropriate pipeline specifications for mixed gases lacking industry experience
 - CO₂-SO₂ mixtures
 - Water content limits
 - Dehydration requirements
- Evaluate stability of wellbore casing steels exposed to mixed-gases containing water

Approach

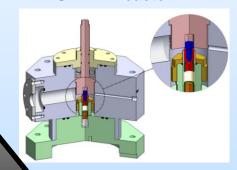

- Conduct laboratory experiments to examine reactivity of CO₂-SO₂-O₂-H₂O mixtures on steel surfaces
- Determine role of water in reaction steps and impact of steel additives (such as Mn and Mo) on corrosion

In Situ Supercritical Suite: An \$8M Laboratory Investment


In situ Atomic Force Microscopy

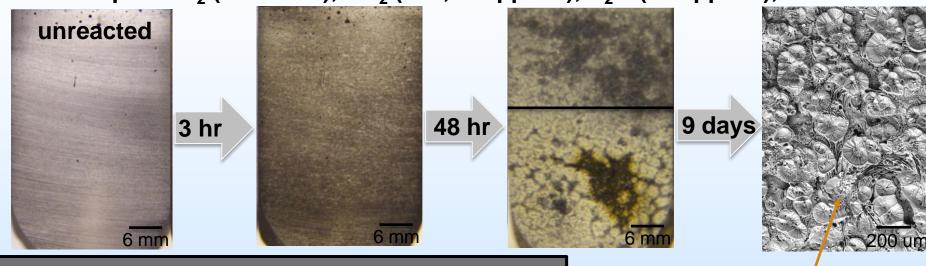
Novel reactors for in situ IR ATR spectroscopy

Spectroscopic and microscopic probes of interfacial structure and processes

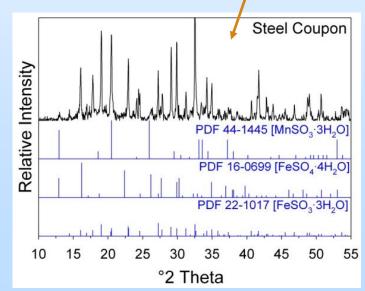


Structural data on intermediate phases during mineral transformation processes

Rate equations and parameters for reactions occurring between water dissolved into scCO₂ and primary silicate minerals in basalts


High Pressure MAS NMR Reactor

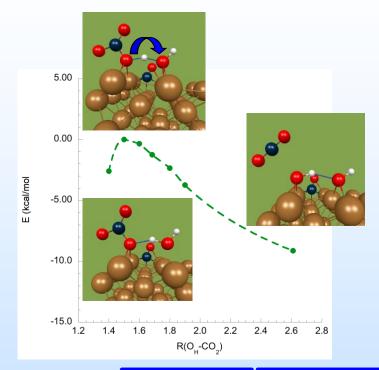
Identification of chemical species, amorphous silica, and detection of carbonation

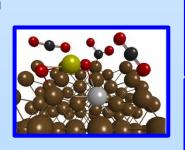

X65 Steel Corrosion with Mixed Gases

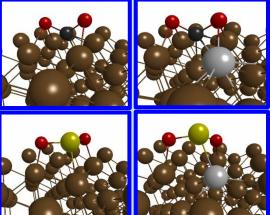
Liquid CO₂ (6.14 MPa), SO₂ (~13,000 ppmw), H₂O (760 ppmw), 25°C

Mixed Gas Chemistry

- Surface corrosion products develop after 3 hours
 - Different surface corrosion products form including an unexpected Mn sulfite phase
- Water threshold
 - Tests with less water (300 ppmw) indicate a much lower threshold for onset of visible surface corrosion versus CO₂-H₂O
 - Increases in H₂O content produce more corrosion

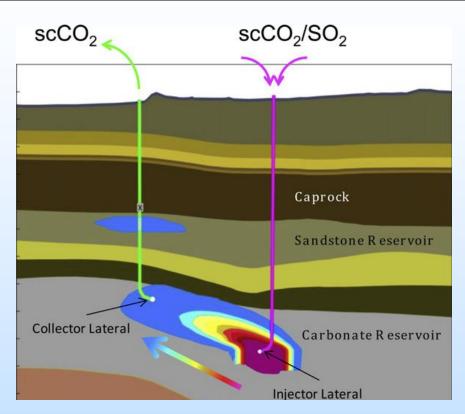



Molecular Simulations Provide Insights on Surface Interactions

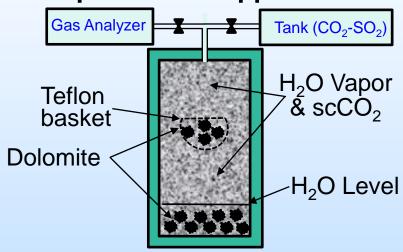

- Molecular Scale: H₂O on metal surface remains in molecular form
 - Binds strongly in presence of absorbed oxygen
 - Inclination to hydroxylate surface
 - Reduction in barrier energies to <9.0 kcal/mol
 - Regeneration of H₂O by H transfer to nearby OH

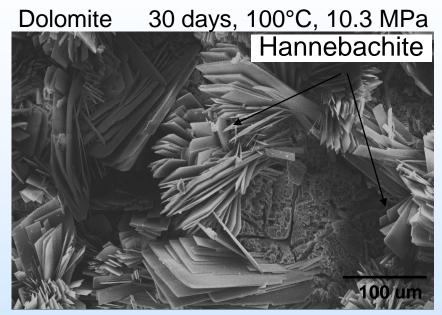
DFT Calculations:

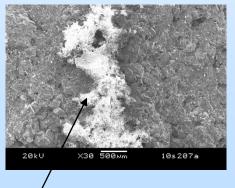
- Catalytic activity of H₂O
- H₂CO₃/H₂SO₃ formation is not necessary
- SO₂ binds more strongly on Fe or Fe/Mn surface compared to CO₂, SO₂ prefers Mn binding sites, scavenges O from ads CO
- non-equilibrium effects upon rates
- Current Activity: CO₂-SO₂-O₂-H₂O experiments



In Situ Scrubbing Concept


- Oxy-combustion gas streams can contain over 1% SO₂
 - Likely candidate technology for new builds or retrofits
 - Currently managed through SO₂ scrubbers
- In situ stripping could be used for gas cleanup
 - More economically favorable when retrofitting existing power plants for CO₂ capture
 - Produce pipeline grade CO₂ for EOR/EGR with no additional capital or operating costs for FGD

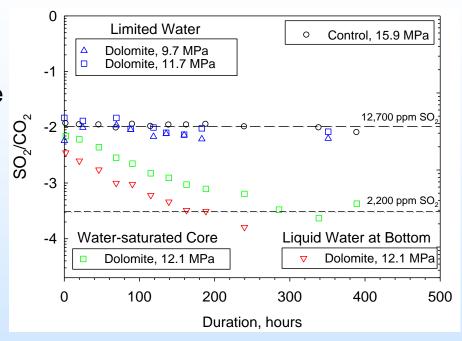

Glezakou, V. A., B. P. McGrail, and H. T. Schaef. 2012. "Molecular Interactions of SO₂ with Carbonate Minerals under Co-Sequestration Conditions: A Combined Experimental and Theoretical Study." *Geochim. Cosmochim. Ac.* **92:265-274.**

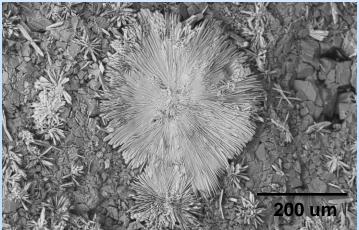

Co-sequestration in Carbonate Reservoirs

- Goal: Designing laboratory tests to simulate subsurface conditions
- Experimental Approach:

 Results: Carbonate reservoirs are reactive and strip aqueous dissolved gaseous SO₂ from solution to precipitate solid sulfur bearing minerals

Dolomite suspended above H₂O line contained no sulfur bearing reaction products

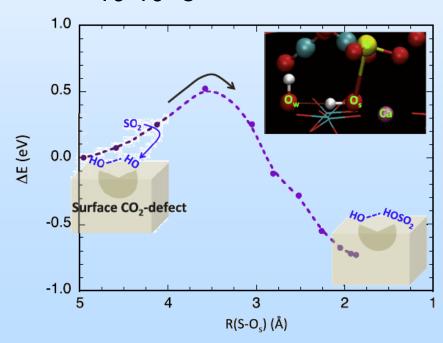

Low-water environments: Does SO₂ stripping occur?

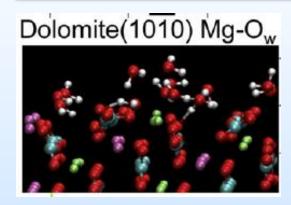

Results

- Sulfur species permanently and quickly removed from scCO₂ phase
- Solid sulfur products
 - Surface coatings form very rapidly
 - Hannebachite (CaSO₃·0.5H₂O)

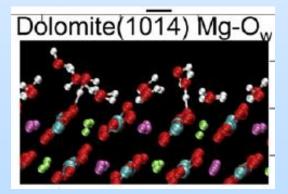
Utilization

- Carbonate reservoirs are widespread and appear well suited for accepting mixed CO₂-SO₂ gas streams
- Clean CO₂ generated via in situ scrubbing could be stored or used immediately for EOR/EGR



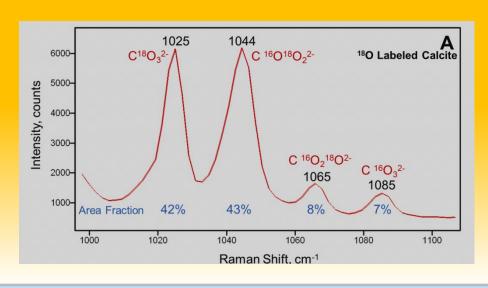

Energy profile for initial steps of sulfation reactions: Surface defects do the trick!

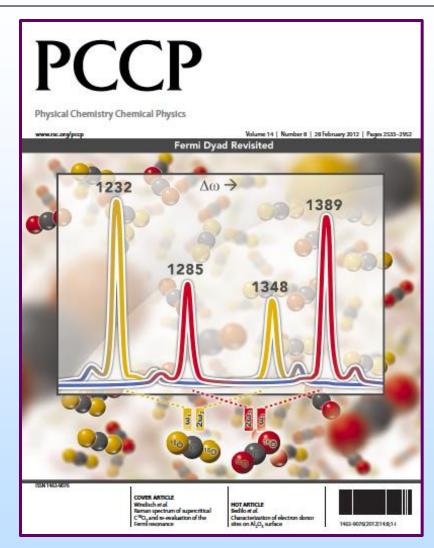
- □ Surface defects radically change the energy profile of sulfation reaction
- □ Formation of SO₃ proceeds
 with small barrier, ~0.5 eV,
- Estimated rates


 $\sim 10-10^4 \, \text{s}^{-1}$

Figures from V-A Glezakou, BP McGrail, HT Schaef, 2012. "Molecular interactions of SO₂ with carbonate minerals under co-sequestration conditions: a combined experimental and theoretical study", *Geochim. Cosmochimi. Acta* **92**:265-274.

M_{Ore} reactive




Surface reactive

Isotopic Exchange Studies

- Raman studies of carbonate reactions under SC conditions with ¹⁸O-labels for H₂O and CO₂
- First reported Raman shift for scC¹⁸O₂ and mixed system
- Discovered unexpected swap of characteristic doublet (Fermi Dyad)

Application: Track ¹⁸O uptake occurring from chemical reactions occurring in the scCO₂ phase using Raman spectroscopy



Windisch, C. F., V.-A. Glezakou, P. F. Martin, B. P. McGrail, and H. T. Schaef. 2012. "Raman Spectrum of Supercritical C¹⁸O₂ and Re-Evaluation of the Fermi Resonance." *Phys. Chem. Chem. Phys.* **14(8):2560-2566.**

15

Future Work: Mixed Gas Utilization and Storage in Shale Gas Reservoirs

- Better understand potential opportunities for mixed gas storage and utilization in shales
 - Assess potential for in situ chemical scrubbing in fractured shales
 - Distinguish chemical reactivity versus physisorption processes
 - Effects of solvated water and SO₂
 - Quantify impact of compositional and mineralogical variability (empirical versus first principles methods)
- Address potential loss of U.S. CO₂ storage capacity
 - Improve understanding of permanent CO₂ and contaminant gas trapping mechanisms in shales
 - Evaluate methods to remediate fractured shale sealing properties

Approximately half of all large stationary U.S. source emissions are located within ~50 miles of a current or prospective shale play.

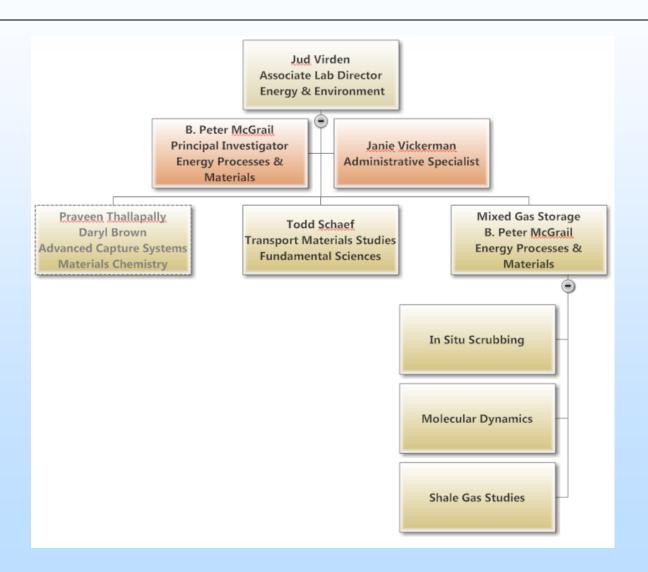
Accomplishments to Date

- Multicomponent mixed gas transportation issues
 - Pipeline steel and wellbore components
 - Providing scientific basis for developing pipeline specifications for gas mixtures lacking industry experience
 - Established water thresholds necessary to initiate corrosion reactions
 - MD simulations identified reaction paths and corrosion mechanisms
- Subsurface Chemistry of Co-sequestration
 - Proved efficacy of in situ removal of sulfur from scCO₂ phase by carbonate reservoirs
 - Precipitation of sulfur based solids permanently sequestered
 - Production of pure CO₂ stream for utilization
 - Molecular understanding of mixed-gas reactivity with important minerals
 - Transferring methods to other targets such as depleted shale gas formations

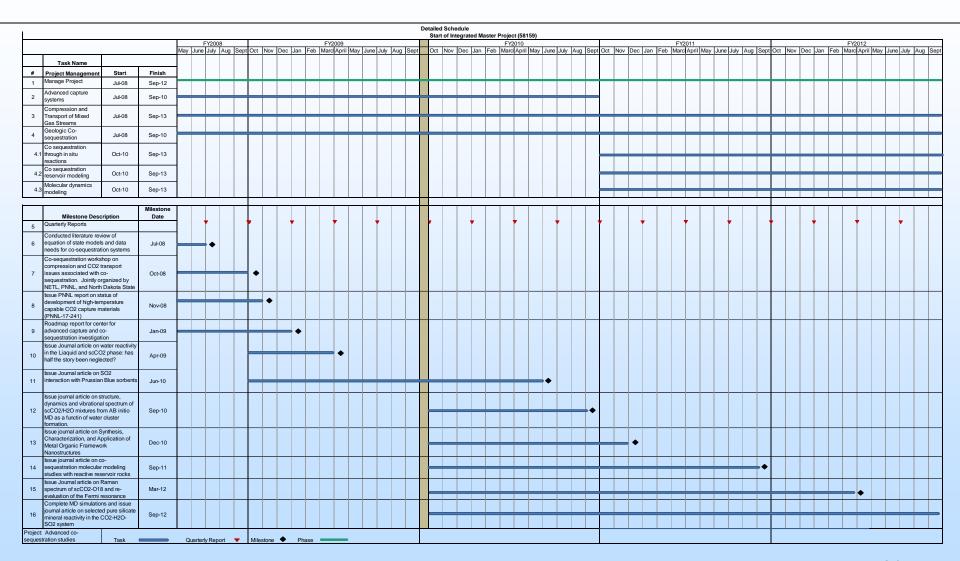
Summary

Key Findings

- Threshold water content for onset of corrosion in liquid CO₂ varies considerably depending on contaminant gases present
- Industry standard pipeline steels produce unexpected corrosion products in CO₂-SO₂-H₂O mixtures
- Carbonate reservoirs offer potential for in situ scrubbing of mixed gas streams
- Labeled oxygen isotopes and discovery of Raman spectrum shifts in labeled C¹⁸O₂ provide insights into reaction mechanisms of mixed-gas streams with key mineral phases


FY13 Activity Summary

- Extend carbon steel corrosion work into CO₂-SO₂-O₂-H₂O system and assess impacts on pipeline and casing materials of importance for constructing co-sequestration injection wells
- Initiate new activity in mixed gas storage and utilization in shale gas formations
 - Distinguish among trapping mechanisms
 - Apply MD simulations to understand reaction mechanisms
 - Assess techno-economic feasibility of EGR from first principles based model for fate and transport of multicomponent gas mixtures in fractured shale gas reservoirs


Appendix

These slides will not be discussed during the presentation, but are mandatory

Organization Chart

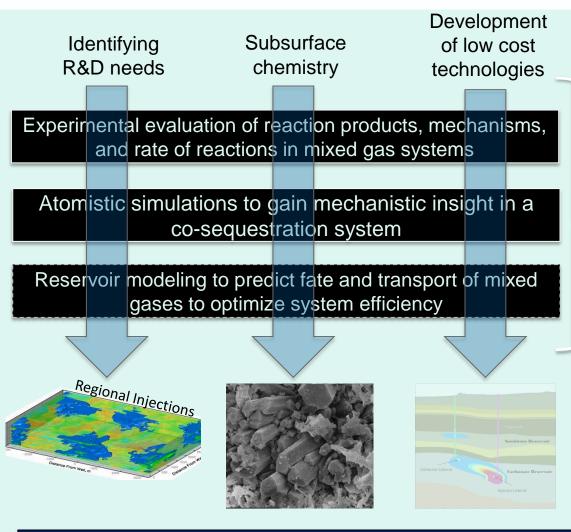
Gantt Chart

Bibliography

- Glezakou, V-A., B. P. McGrail, and H. T. Schaef. 2012. "Molecular interactions of SO₂ with carbonate minerals under co-sequestration conditions: a combined experimental and theoretical study", *Geochim. Cosmochim. Acta* 92:265-274.
- Glezakou, V.-A., B. P. McGrail, H. T. Schaef, C. F. Windisch, and P. F. Martin. 2012. "Interfacial reactions in wet scCO2: Insights from molecular simulations", Proceedings of 11th ACCUS, May 2012, 404.
- Windisch Jr, C. F., H. T. Schaef, P. F. Martin, A. T. Owen, and B. P. McGrail. 2012.
 "Following ¹⁸O uptake in scCO₂-H₂O mixtures with Raman spectroscopy", Spectrochimica Acta Part A 94:186-191.
- Windisch, C. F., V.-A. Glezakou, P. F. Martin, B. P. McGrail, and H. T. Schaef. 2012.
 "Raman Spectrum of Supercritical C¹⁸O₂ and Re-Evaluation of the Fermi Resonance."
 Phys. Chem. Chem. Phys. 14(8):2560-2566.
- Glezakou, V.-A., R. Rousseau, L. X. Dang, and B. P. McGrail. 2010. "Structure, Dynamics and Vibrational Spectrum of Supercritical CO₂/H₂O Mixtures from Ab Initio Molecular Dynamics as a Function of Water Cluster Formation." *Phys. Chem. Chem. Phys.* 12(31):8759-71.

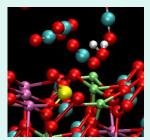
Bibliography

- White, M. D., B. P. McGrail, H. T. Schaef, J. Z. Hu, D. W. Hoyt, A. R. Felmy, K. M. Rosso, and S. K. Wurstner. 2011. "Multiphase Sequestration Geochemistry: Model for Mineral Carbonation." *Energy Procedia* **4**:5009-5016.
- Glezakou, V. A., L. X. Dang, and B. P. McGrail. 2009. "Spontaneous Activation of CO₂ and Possible Corrosion Pathways on the Low-Index Iron Surface Fe(100)." *J. Phys. Chem. C* 113.
- McGrail, B., H. Schaef, V. Glezakou, L. Dang, P. Martin, and A. Owen. 2009. "Water Reactivity in the Liquid and Supercritical CO₂ Phase: Has Half the Story Been Neglected?" *Energy Procedia* 9:3691-3696.


Legacy Capture-Related Publications

- Tian, J., P. K. Thallapally, and B. P. McGrail. 2012. "Porous organic molecular materials." CrystEngComm 14 (6):1909-1919.
- Liu, Jian, P. K. Thallapally, B. P. McGrail, D. R. Brown, and J. Liu. 2012. "Progress in adsorption-based CO₂ capture by metal–organic frameworks." *Chem. Soc. Rev.* 41:2308-2322.
- Thallapally, P. K., R. K. Motkuri, C. A. Fernandez, B. P. McGrail, and G. S. Behrooz.
 2010. "Prussian Blue Analogues for CO₂ and SO₂ Capture and Separation Applications."
 Inorg. Chem. 49(11):4909-4915.

Bibliography


- Windisch C. F., Jr, P. K. Thallapally, and B. P. McGrail. 2010. "Competitive Adsorption Study of CO₂ and SO₂ on Co^{II}₃[Co^{III}(CN)₆]₂ Using DRIFTS." *Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy* **77**(1):287–291.
- Tian J, R. K. Motkuri, and P. K. Thallapally. 2010. "Generation of 2D and 3D (PtS, Adamantanoid) Nets with a Flexible Tetrahedral Building Block." *Crystal Growth & Design* **10**(9):3843-3846.
- Nune SK, PK Thallapally, and BP McGrail. 2010. "Metal Organic Gels (MOGs): A New Class of Sorbents for CO₂ Separation Applications." *Journal of Materials Chemistry* 20(36):7623-7625.
- Fernandez, CA, Nune, SK, Motkuri, RK, Thallapally, PK, Wang, CM, Liu, J, Exarhos, GJ, McGrail, BP, 2010. "Synthesis, Characterization, and Application of Metal Organic Framework Nanostructures". *Langmuir*, 26 (24), 18591-18594.
- Motkuri, R. K., P. K. Thallapally, B. P. McGrail, S. B. Ghorishi. 2010. "Dehydrated Prussian blues for CO₂ storage and separation applications." *CrystEngComm* 12(12):4003-4006.

Employing a multidisciplinary approach to advance co-sequestration opportunities

Sulfite mineral forming on dolomite

MD simulation showing initial steps of sulfation

production environmental impacts energy enhance nd minimiz o Utilization

Project goal: Develop geologic storage paradigm around mixed- gas streams to lower cost and energy penalty of integrated CCUS