Comprehensive, Quantitative Risk Assessment of CO₂ Geologic Sequestration

Project Number DE-FE0001112

Jim Lepinski
Headwaters Clean Carbon Services LLC

U.S. Department of Energy

National Energy Technology Laboratory
Carbon Storage R&D Project Review Meeting
Developing the Technologies and Building the
Infrastructure for CO₂ Storage

August 21-23, 2012

Presentation Outline

- Benefits of the Program
- Project Overview: Objectives and Goals
- Project Team
- QFMEA Model
- Financial Modeling
- Process-Level Modeling
- System-Level Modeling
- Quantitative Risk Assessment
- Future Plans
- Accomplishments to Date
- Summary
- Appendix

Benefit to the Program

Program goals being addressed.

- Develop technologies that will support industries' ability to predict CO₂ storage capacity in geologic formations to within + 30 percent.
- Develop technologies to demonstrate that 99 percent of injected CO₂ remains in the injection zones.
- Validate risk assessment process models using results from large-scale storage projects to develop risk assessment profiles for specific projects.

Project benefits statement.

 This project is developing a comprehensive, quantitative CO₂ risk assessment tool, based on a Failure Modes and Effects Analysis (FMEA) model, that can be customized to assess site-specific projects, integrated with other CO₂ storage assessment tools, and easily modified, improved or expanded. This tool will help identify and characterize risks and risk prevention/mitigation steps and estimate associated costs to ensure 99 percent CO₂ storage permanence in CO₂ sequestration in deep saline aquifers (DSA), enhanced oil recovery (EOR) and enhanced coal bed methane (ECBM).

HCCS Project Overview: Objectives & Goals

Project Objectives

 The primary objective of this project is to develop and apply an innovative, advanced, process-based risk assessment model and protocol to determine quantitative risks and predict quantitative impacts for CO₂ geologic sequestration project sites. The model shall be capable of integration with advanced simulation models and MVA technologies.

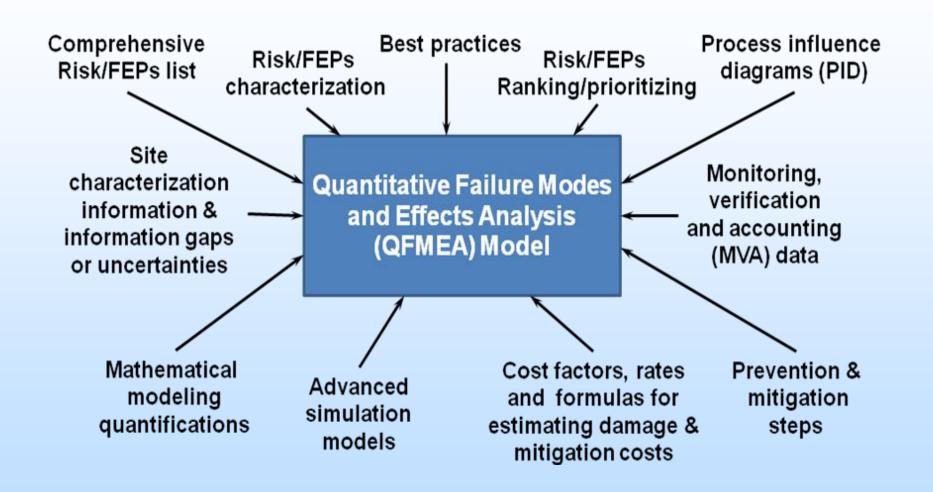
Project goals

- Identify and characterize technical and programmatic risks for CO₂ capture, transportation and sequestration in DSA, EOR and ECBM.
- Employ probabilistic calculations, process- and system-level simulation models to quantify risks
- Develop a Quantitative Failure Modes and Effects Analysis (QFMEA) model.
- Estimate capital, operating and closure costs, potential damage recovery costs, risk mitigation costs and potential cost savings with risk mitigation.
- Conduct quantitative risk assessments on up to three different sites.

Project Team

 Headwaters Clean Carbon Services LLC – Risk identification and characterization, QFMEA development, financial modeling, estimating potential damage recovery costs and mitigation costs. Project management. Review of overall work product.

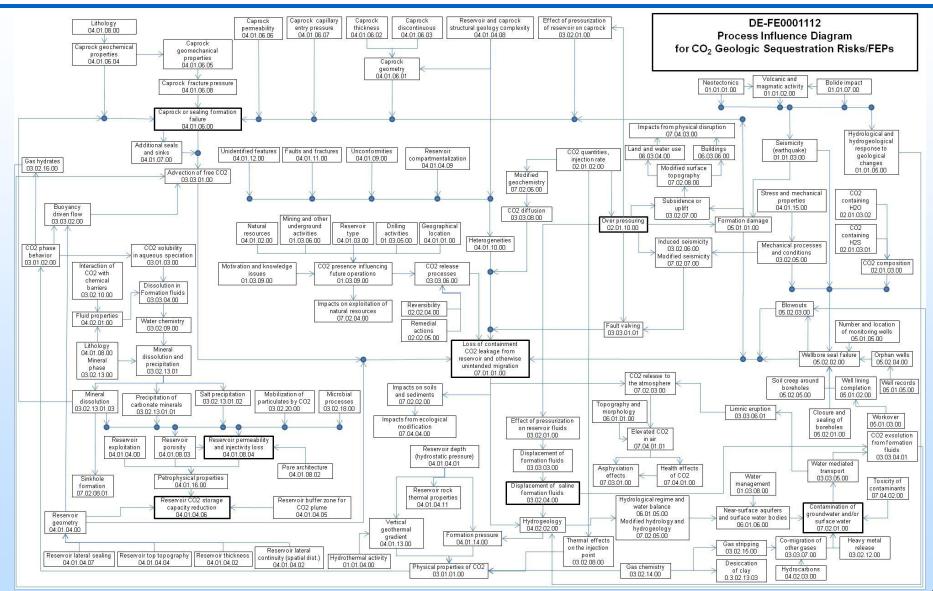
 Faulkner & Flynn (Marsh) – Refining QFMEA, financial model, estimates of potential damage recovery costs and mitigation costs. Development of insurance schedule for CO₂ sequestration. Review of overall work product.


 The University of Utah – Process-level modeling and probability calculations. Review of overall work product.

 Los Alamos National Laboratory – System-level modeling. Review of overall work product.

QFMEA Model

Risk Characterization


- Index number
- Risk area/FEP
- Description of risk/FEP
- Relevance to CO₂ geologic storage
- Site specific information
- Site specific information gaps or uncertainties
- FEPs type (feature, event, process)
- CO₂ storage type (DSA, EOR, ECBM)
- Project phase impacted (site characterization, EPC, startup/operation, post-injection site care)

			Project Spec	ific Information		ЕР:		Sto	orag	је Т	уре	Project Phase Impacted									
ndex #	Risk Area/FEP	Description	Site Specific Information		Feature	Event	Process	DSA	EOR	ECBM	All Storage	Site Characterization	Eng. Proc. Const. (EPC)	Startup and Operation	Post-Injection Site Care	All Project Phases					

A HEADWATERS COMPANY

HCCS Process Influence Diagrams

Failure Modes and Effects Analysis (FMEA)

- Potential failure mode
- Cause of failure
- Potential failure effect
- Method of detecting failure
- Prevention and mitigation steps
- Ranking probability of failure (P = 1 to 5)
- Ranking severity of failure (S = 1 to 5)
- Ranking difficulty to detect failure (D = 1 to 5)
- Risk priority number (P x S x D = 1 to 125)

Potential failure mode Cause of failure effect Potential Method of detecting failure failure failure	Probability of failure (P=1 to 5) Severity of failure (S=1 to 5)	failure - P x S x D
--	---	---------------------

Ranking Factors for Risks

Ranking Factor	Probability of Failure Occurring	Severity of Failure Effect	Difficulty of Detecting Failure Early
5	Likely – frequency ≥1x10 ⁻¹ per year (one event every 1 to 10 years)	Catastrophic – Multiple fatalities. Damages exceeding \$100M. Project shut down.	Almost Impossible – No known control(s) available to detect failure early.
4	Possible – frequency from 1x10 ⁻² to 1x10 ⁻¹ per year (one event every 10 to 100 years)	Serious – Isolated fatality. Damages \$10M-\$100M. Project lost time greater than 1 year.	Low – Low likelihood current control(s) will detect failure early.
3	Unlikely – frequency from 1x10 ⁻⁴ to 1x10 ⁻² per year (one event every 100 to 10,000 years)	Significant – Injury causing permanent disability, Damages exceeding \$1M to \$10M. Project lost time greater than 1 month. Permit suspension. Area evacuation.	Moderate - Moderate likelihood current control(s) will detect failure early
2	Extremely Unlikely – frequency from 1x10 ⁻⁶ to 1x10 ⁻⁴ per year (one event every 10,000 to 1,000,000 years)	Moderate – Injury causing temporary disability. Damages \$100k to \$1M. Project lost time greater than 1 week. Regulatory notice.	High – High likelihood current control(s) will detect failure early
1	Incredible – frequency <1x10 ⁻⁶ per year (less than one event every 1,000,000 years)	Light – Minor injury or illness. Damages less than \$100k. Project lost time less than 1 week.	Almost Certain – Current control(s) almost certain to detect the failure early. Reliable detection controls are known with similar processes.

HCCS QFMEA Model Quantification

Damage Recovery Cost

Human He	ealth and	Safety	Natural	Third-	Owner	Owner		CO ₂	
Fatalities (\$)	Serious Injuries (\$)	Minor Injuries (\$)	Resource Damage	Party Property Damage (\$)	Property	Rusiness	IECONOMICS	Fmissions	Litigation Costs (\$)

Prevention/Mitigation Cost Savings

A. Damage Recovery Cost w/o Prevention and Mitigation (\$)	B. Damage Recovery Cost w/ Prevention and Mitigation (\$)		D. Cost Savings with Prevention and Mitigation (\$) $D = A - B - C$
--	--	--	---

HCCS Quantifying Damage Recovery Costs

Damage Scenario	Fatalities	Serious Injuries	Minor Injuries	Damage	Natural Resource	Property Damage	Third-Party	Owner Property Damage	Interruption	Owner Business	Litigation Costs
Leaky borehole											
Leaky fault, fracture zone or permeable pathway											
Well blowout (CO ₂ or hydrocarbons)											
Pipeline puncture or rupture (CO ₂ + H ₂ S)											
Induced or natural earthquake											
USDW contamination (CO ₂ /H ₂ S/brine/heavy metals)											
Soil/sediment contamination											
EOR oil spill											
Accumulation of CO ₂ in poorly ventilated low areas											
or confined spaces											
Water/brine extraction, storage, handling, treating											
and disposal.											
Fire and/or explosion											

Rates and formulas developed for key damage scenarios based on published data, experience and analogues.

Cost Factors and Formula Database

- Pore space or land leasing/purchasing costs
- Site characterization and permitting costs
- Compressor and pipeline capital and operating costs
- Well drilling, completion and operating costs
- Monitoring, mitigation and verification (MMV) costs
- DSA, EOR and ECBM capital, operating and closure costs
- Insurance costs
- Business interruption costs
- Remediation costs for loss of containment
- Water/brine extraction, storage, handling, treatment and disposal costs
- Compensation for human fatalities and injuries
- Compensation for wildlife, vegetation, agricultural and natural resource damage
- EOR oil spill damage recovery costs
- Earthquake damage costs
- Lost value of accidental or intentional CO₂ emissions
- Litigation costs

Cost factors and formulas based on published data, vendor estimates, experience and analogues.

HCCS CO₂-DSA Financial Modeling

Project Assumptions

Key Inputs

Quantity of CO₂ to be injected

Years of CO₂ injection

Years of post-injection site care

CO₂ pipeline length

CO₂ reservoir dimensions/properties

Key Outputs

Ultimate extent of the CO₂ plume

Number of wells

Project capital costs

Project operating & maintenance costs

Financial responsibility required by EPA

Financial Assumptions

Key Inputs

CO₂ storage fee

Electricity cost

Capacity utilization

Capital contingencies

Financing cost

Working capital

Construction and spending schedules

Debt/equity ratio, interest rate and term

Inflation rate

Key Outputs

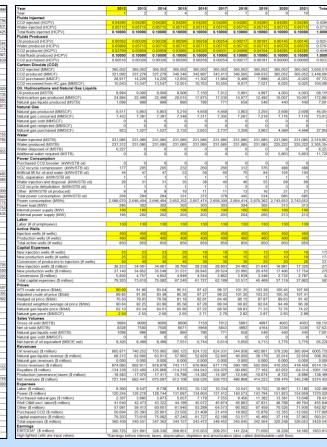
Income statement

Balance sheet

Cash flow forecast

Financial ratios

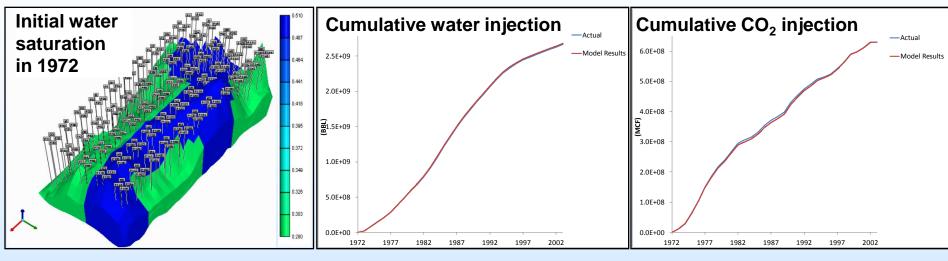
Internal rate of return

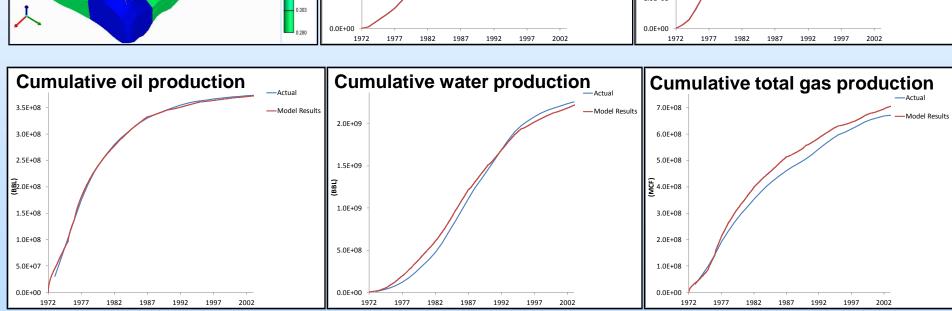

CO₂-EOR Financial Modeling

- Fluid volumes injected and produced (hydrocarbon pore volumes)
- CO₂ purchased, injected and recovered
- Oil, HC, NG and NGL produced and recovered
- Water injected, recovered and disposed
- Power consumption and generation
- Labor
- Active wells
- Capital expenses
- Prices
- Sales volumes
- Revenues
- Operating expenses
- Earnings

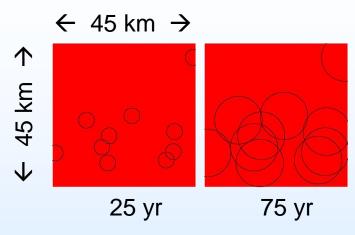
SACROC Unit History 2002-2011

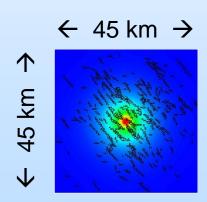
Year	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	Total
Fluids Injected	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	rotal
CO2 injected (HCPV)	0.00904	0.01692	0.02918	0.02618	0.03556	0.03685	0.03727	0.04126	0.04284	0.04284	0.31794
Water injected (HCPV)	0.00304	0.01032	0.02310	0.02016	0.05550	0.05461	0.05727	0.04126	0.04264	0.04264	0.51754
Total fluids injected (HCPV)	0.02079	0.02700	0.06800	0.05145	0.09243	0.09146	0.09865	0.09731	0.09249	0.09249	0.46631
Fluids Produced	0.02373	0.04400	0.00000	0.07703	0.00243	0.03140	0.03000	0.03131	0.03243	0.03243	0.70420
Oil produced (HCPV)	0.00173	0.00265	0.00375	0.00426	0.00407	0.00365	0.0037	0.00399	0.00386	0.00378	0.03544
Water produced (HCPV)	0.01798	0.02528	0.03882	0.05145	0.05687	0.05461	0.06138	0.05605	0.04965	0.04965	0.46174
CO2 produced (HCPV)	0.00315	0.00728	0.01465	0.01512	0.02498	0.02776	0.02618	0.03042	0.03342	0.03625	0.21921
Total fluids produced (HCPV)	0.02286	0.03521	0.05722	0.07083	0.08592	0.08602	0.09126	0.09046	0.08693	0.08968	0.71639
Carbon Dioxide (CO2)			0.00122	4.47.002	0.110316	0.00000	0.00120	0.03040	0.00033	0.00000	0.11000
CO2 injected (MCF/D)	210.975	395.000	681.000	610.959	830.000	860.000	870.000	963.014	1.000.000	1.000.000	
CO2 produced (MCF/D)	73,526	170,000	342,000	352 959	583.000	648.000	611,000	710.014	780.000	846,000	
CO2 purchased (MCF/D)	137,449	225,000	339.000	258,000	247.000	212,000	259,000	253,000	220,000	154.000	
CO2 injected (MCF)	77.005.875	144,175,000	248.565.000	223.000.035	302,950,000	313.900.000	317.550.000	351.500.110	365,000,000	365.000.000	2.708.646.020
CO2 produced (MCF)	26,836,990	62,050,000	124,830,000	128.830.035	212,795,000	236,520,000	223,015,000	259,155,110	284,700,000	308,790,000	1.867.522.135
CO2 purchased (MCF)	50,168,885	82,125,000	123,735,000	94,170,000	90,155,000	77,380,000	94,535,000	92,345,000	80,300,000	56,210,000	841,123,885
CO2 purchased (HCPV)	0.00589	0.00964	0.01452	0.01105	0.01058	0.00908	0.0111	0.01084	0.00943	0.0066	0.09873
Oil, Hydrocarbons and Natural G	s Liquids										
Oil produced (STB/D)	13,059	20,056	28,340	32,200	30,795	27,604	27,995	30,149	29,222	28,627	
HC produced (MCF/D)	18,609	48,000	59,000	71,000	73,000	73,000	70,000	81,000	74,000	72,500	
NGL produced (STB/D)	0	3,700	7,700	9,400	8,900	9,600	8,300	9,400	10,000	8,500	
Oil produced (STB)	4,766,535	7,320,440	10,344,100	11,753,000	11,240,175	10,075,460	10,218,175	11,004,385	10,666,030	10,448,855	97,837,155
HC produced (MCF)	6,792,285	17,520,000	21,535,000	25,915,000	26,645,000	26,645,000	25,550,000	29,565,000	27,010,000	26,462,500	233,639,785
NGL produced (STB)	0,100,000	1,350,500	2,810,500	3,431,000	3,248,500	3,504,000	3,029,500	3,431,000	3,650,000	3,102,500	,,
Gross BOE produced (STB)	4,766,535	8,670,940	13,154,600	15,184,000	14,488,675	13,579,460	13,247,675	14,435,385	14,316,030	13,551,355	125,394,655
Water											
Water injected (STB/D)	229,905	300,000	430,000	570,000	630,025	605.000	680,000	620,959	550,000	550.000	
Water produced (STB/D)	199,170	280,000	430,000	570,000	630,000	605,000	680,000	620,959	550,000	550,000	
Water injected (STB)	83,915,325	109,500,000	156,950,000	208,050,000	229,959,125	220,825,000	248,200,000	226,650,035	200,750,000	200,750,000	1,885,549,485
Water produced (STB)	72,697,050	102,200,000	156,950,000	208,050,000	229,950,000	220,825,000	248,200,000	226,650,035	200,750,000	200,750,000	1,867,022,085
Expansion Capital											
Expansion Capital (\$)	183,000,000	244,000,000	278,000,000	196,000,000	204,000,000	256,000,000	347,000,000	258,000,000	227,000,000	257,000,000	2,450,000,000
CO2 capex incl. in opex (\$)	14,046,080	29,975,260	52,552,700	59,294,250	71,985,300	57,115,200	88,811,800	65,481,000	76,368,950	63,663,300	579,293,840
Well work incl. in opex (\$)	0	0	26,276,350	30,305,950	66,933,700	65,444,500	81,891,400	52,888,500	53,833,850	46568525	424,142,775
Gas handling incl. in opex (\$)	0	0	39,985,750	43,482,450	36,624,100	57,115,200	55,363,200	36,518,250	52,581,900	49,515,900	371,186,750
Net capex (\$)	168,953,920	214,024,740	159,185,200	62,917,350	28,456,900	76,325,100	120,933,600	103,112,250	44,215,300	97,252,275	1,075,376,635
Prices											
WTI spot price (\$/BBL)	26.18	31.08	41.51	56.64	66.05	72.34	99.67	61.95	79.48	94.88	
Weighted avg oil price (\$/BBL)	22.45	23.73	25.72	27.36	31.42	36.05	49.42	49.55	59.96	69.73	
Weighted avg NGL price (\$/BBL)	18.33	21.77	31.33	39.98	43.9	52.91	63	37.96	51.03	65.61	
Sales Volume											
Net Oil sales (STB/D)	10,317	15,900	23,600	26,700	25,700	23,000	23,300	25,100	24,300	23,800	
Net NGL Sales (STB/D)	0	3,700	7,700	9,400	8,900	9,600	8,300	9,400	10,000	8,500	
Net BOE sales (STB/D)	10,317	19,600	31,300	36,100	34,600	32,600	31,600	34,500	34,300	32,300	
Net Oil sales (STB)	3,765,705	5,803,500	8,614,000	9,745,500	9,380,500	8,395,000	8,504,500	9,161,500	8,869,500	8,687,000	80,926,705
Net NGL Sales (STB)	0	1,350,500	2,810,500	3,431,000	3,248,500	3,504,000	3,029,500	3,431,000	3,650,000	3,102,500	27,557,500
Net BOE sales (STB)	3,765,705	7,154,000	11,424,500	13,176,500	12,629,000	11,899,000	11,534,000	12,592,500	12,519,500	11,789,500	108,484,205
Revenues											
Oil revenue (\$)	84,540,077	137,717,055						453,952,325			
NGL revenue (\$)	0	29,400,385	88,052,965	137,171,380	142,609,150			130,240,760	186,259,500	203,555,025	1,293,544,305
Total revenue (\$)	84,540,077	167,117,440	309,605,045	403,808,260	437,344,460	488,036,390	611,150,890	584,193,085	718,074,720	809,299,535	4,613,169,902
Expenses											
Taxes other than income (\$/BOE)	0.87	0.88	1.00	1.70	2.00	2.30	2.20	0.00	2.00	1.75	
Power (\$/BOE net)	2.90	2.56									
Well work (\$/BOE net)			2.30	2.30	5.30	5.50	7.10	4.20	4.30	3.95	
CO2 removal (\$/BOE net)	0.74	0.61									
CO2 capitalized (\$/BOE net)	3.73	4.19	4.60	4.50	5.70	4.80	7.70	5.20	6.10	5.40	
CO2 expensed (\$/BOE net)	2.09	2.36	2.60	2.50	3.50	2.50	4.60	2.50	3.20	2.83	
Gas handling (\$/BOE net)			3.50	3.30	2.90	4.80	4.80	2.90	4.20	4.20	
Labor (\$/BOE net)	0.99	0.73	0.30	0.50	0.50	0.75	1.00	0.75	1.30	1.95	
Other (\$/BOE net)	2.83	1.91	0.90	1.30	1.90	1.60	2.30	1.30	1.20	1.30	
Total expenses (\$/BOE net)	13.28	12.35	15.20	16.10	21.80	22.25	29.70	16.85	22.30	21.38	
Total expenses (\$)	49,989,966	88,358,404	173,652,400	212,141,650	275,312,200	264,752,750	342,559,800	212,183,625	279,184,850	252,059,510	2,150,195,155
Earnings											
Calculated EBITDDA* (\$)	34,550,111	78,759,036	135,952,645	191,666,610	162,032,260	223,283,640	268,591,090	372,009,460	438,889,870	557,240,025	2,462,974,748
KM reported EBITDDA (\$)**	31,300,000	72,500,000	112,000,000	203,500,000	167,000,000	162,000,000	203,000,000	361,000,000	478,000,000	593,000,000	2,383,300,000
Purchased CO2 Cost Analysis											
CO2 cost (\$/BOE net)	5.82	6.55	7.20	7.00	9.20	7.30	12.30	7.70	9.30	8.23	
CO2 cost (\$)	21,916,403	46,858,700	82,256,400	92,235,500	116,186,800	86,862,700	141,868,200	96,962,250	116,431,350	97,027,585	
CO2 cost (\$/MCF)	0.44	0.57	0.66	0.98	1.29	1.12	1.50	1.05	1.45	1.73	
CO2 cost % of WTI	1.67	1.84	1.60	1.73	1.95	1.55	1.51	1.69	1.82	1.82	
Revenue Analysis											
Calculated revenue (\$/BOE net)	22.45	23.36	27.10	30.65	34.63	41.01	52.99	46.39	57.36	68.65	
KM reported revenue (\$/BOE net)					35.50	39.50	52.00	47.50	58.00		
*Earnings before interest, taxes, dep	reciation, deal	etion and amo	tization (also o	alled distributa	ble cash flow		"Including SA	CROC senice	s and remainin	g oil and gas a	ssets


SACROC Unit Projection 2012-2021



CO₂-EOR Process-Level Modeling

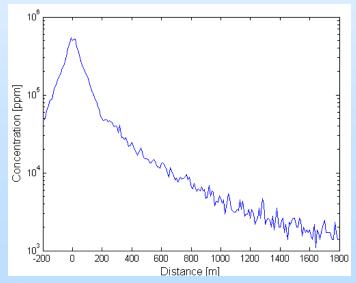

History Match of SACROC Northern Platform Area 1972-2002



System-Level Modeling

Modeling leaky wells

Evolution of CO₂/brine leakage over time



Modeling leaky faults

Brine leakage through random faults (colors indicate fluid pressure at top of reservoir)

Modeling multiple stacked sinks & seals

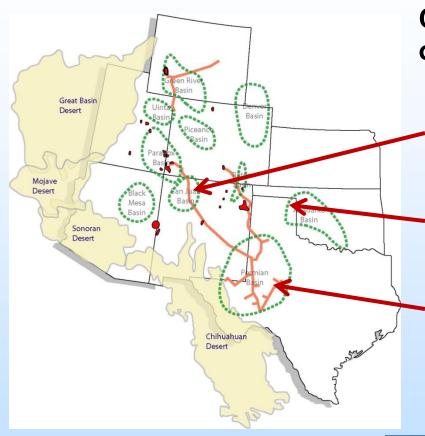
Modeling pipeline leaks & ruptures

HCCS Quantitative Risk Assessment

1. Gather site-specific information

A HEADWATERS COMPANY

- 2. Input site-specific information into the FMEA model
- 3. Identify information gaps or uncertainties
- 4. Adjust failure modes, causes, severity effect and methods of detection to the sitespecific case
- 5. Eliminate risk areas that are not applicable
- 6. Identify relevant site-specific risk prevention and mitigation steps
- 7. Develop and run site-specific process-level, system-level and financial models to quantify probability, severity and cost factors.
- 8. Input potential damage recovery costs (w/o and w/ risk mitigation), risk mitigation costs and potential cost savings (cost/benefit analysis) into the QFMEA model.
- 9. Rank and prioritize risk areas for site-specific conditions based on probability of failure occurring, severity of failure effect and difficulty of detecting failure early.
- 10. Submit results to a cross-functional team of experts for review for completeness and accuracy.
- 11. Use results to manage risks during design, construction, operation and closure.
- 12. Update and revise as more information becomes available or conditions change.



HCCS Accomplishments to Date

- Identified and characterized a comprehensive list of technical and programmable risks for CO₂ capture, transport and sequestration in DSA, EOR and ECBM.
- Developed and employed probability calculations, process- and system-level simulation models, and shortcut calculations to quantify risks.
- Developed a comprehensive Quantitative Failure Modes and Effects Analysis (QFMEA) model for CO₂ capture, transport, and sequestration for DSA, EOR and ECBM.
- Developed financial models for CO₂ DSA and EOR to quantify capital and operating costs.
- Developed an insurance schedule for CO₂ DSA, EOR and ECBM to quantify insurance costs.
- Developed cost factors to estimate potential damage recovery costs, mitigation costs and potential cost savings associated with mitigation for DSA, EOR and ECBM.
- Developed a process-level, history-match model and preliminary QFMEA for the SACROC Northern Platform Area CO₂-EOR site.

Future Plans

Complete quantitative risk assessment on three different sites.

- Early CO₂ ECBM, Pump Canyon Unit,
 San Juan Basin, NM
- Early CO₂ EOR, Farnsworth Unit,
 Anadarko Basin, TX
- Mature CO₂ EOR, SACROC Unit, Permian Basin, TX

Summary

Key Findings

- QFMEA is an effective tool for quantitative risk assessment and generates the necessary thought process for risk management during design, construction, operation and closure.
- QFMEA has been quantitatively verified against historical and existing field conditions.
- CO₂ sequestration in deep saline aquifers is cost prohibitive under current regulatory requirements and energy policy.
- SACROC Northern Platform Area is a low risk CO₂-EOR operation due to nearly ideal site conditions, long-term operating experience and extent of technical knowledge.

Lessons Learned

- Operators are reluctant to sponsor third-party risk assessments unless they can see a positive impact on their bottom line.
- Location, location, location. Most CO₂ sequestration risks can be avoided by proper site selection.

APPENDIX

Project Schedule

			Вι	ıdget	riod	Budget Period 2										Budget Period 3											ВР					
Description	Work				201							FY2								FY	201		_		Т			FY	2013			\dashv
2555.4.555	Days	ON	D,	JFN			J	A S	0	N D					J	AS	OI	ND	J				J	A S	sol	ND	J				JA	s
Project Management, Planning and Reporting																																
Update the Project Management Plan	65																															
Planning and Reporting	865																															
Final report submitted to DOE																																٥
Identify and Characterize Risks																														П		П
List of Risks	65																															
Comprehensive risk list submitted to DOE			(0																												
Features, Events and Processes	63																															
FEPS registry submitted to DOE					٥																											
Risk Characterization	65																															
Risk characterization database submitted to DOE							٥																									
Process Influence Diagrams	66																															
Process influence diagrams submitted to DOE									٥																							
Risk Quantification by Mathematical Modeling																																
Develop Process-Level Models	260																															
Develop System-Level Models	260																															
Probabilistic Calculations	260																															
Functioning mathematical models. Summary reports on					Г																									П		
mathematical modeling submitted to DOE													٥																			
Failure Modes and Effects Analysis (FMEA) Model																																\square
Set up FMEA and Prioritize Risks	130																															
Functioning FMEA model. FMEA report submitted to DOE															٥																	
Evaluate the Impact of Risk Mitigation	130																															
Risk Mitigation Cost Savings																																П
Develop Method for Damage Recovery and Cost Savings	130																															
Report on risk mitigation cost savings submitted to DOE																			٥													
Application of Risk Assessment Model																																
Risk Assessment of CO2 Sequestration Sites	455																															
CQRA report for Site A submitted to DOE																									٥							
CQRA report for Site B submitted to DOE																													٥			
CQRA report for Site C submitted to DOE																																٥

Bibliography

- Lepinski, J.A., 2010, Risk assessment and management tools for CO₂ geologic sequestration. Energy and Environmental Conference (EUEC), Phoenix, AZ, February 1, 2010.
- Lepinski, J.A., 2010, Comprehensive and quantitative risk assessment of CO₂ geologic sequestration. DOE/EPA Collaborative Review Meeting, Pittsburgh, PA, March 23, 2010.
- Wriedt, J.; Deo, M.; Lee, S-Y; Han, W.S.; McPherson, B.; and Lepinski, J.A., 2011, A methodology for quantifying risk and likelihood of failure for carbon dioxide injection into saline aquifers. Tenth Annual Conference on Carbon Capture & Sequestration, Pittsburgh, PA, May 2-5, 2011.
- Keating, G. N.; Viswanathan, H. S.; Letellier, B. C.; Han, W. S.; Wriedt, J.; Lee, S-Y; Deo, M.; and Lepinski, J. A., 2011, CO₂ leakage risk: assigning metrics. Tenth Annual Conference on Carbon Capture & Sequestration. Pittsburgh, PA, May 2-5, 2011.
- Lepinski, J.A., 2012, Comprehensive and quantitative risk assessment of CO₂ geologic sequestration DE-FE0001112 annual review. NETL WebEx, February 15, 2012.
- Viswanathan, H., Keating, G., Letellier, B., Keating, E., Dai, Z., Pawar, R., Lopano, C., Hakala, J., 2012, Uncertainty quantification of shallow groundwater impacts due to CO₂ sequestration. SIAM Conference on Uncertainty Quantification, Raleigh, NC, April 2-5, 2012.